
MBBDOO
16/32-BIT MICROPROCESSOR

fourth edition

®MOTOROLA

® MOTOROl..A

M68000

16/32-BIT MICROPROCESSOR
Programmer's Reference Manual

®MOTOROLA

M68000

16/32-BIT MICROPROCESSOR
Programmer's Reference Manual

Fourth Edition

PRENTICE-HALL, Inc., Englewood Cliffs, N.J. 07632

Library of Congress Catalog Card No.: 83-62991

ISBN 0-13-566795-X
ISBN 0-13-541400-8 (Limited ed .)
ISBN 0-13-541392-3 (Special ed .)

Editorial/production supervision: Barbara A. Cassel
Manufacturing buyer: Gordon Osbourne

© 1984, 1982, 1980, 1979 by Motorola lr:ic.

All rights reserved. No part of this book may be reproduced in any form
or by any means without permission in writing from the publisher.

Motorola reserves the right to make changes to any products herein to improve

functioning or design. Although the information in this document has been carefully
reviewed and is believed to be reliable, Motorola does not assume any liability

arising out of the application or use of any product or circuit described herein;

neither does it convey any license under its patent rights nor the rights of others.

Printed in the United States of America

10 9 8 7 6 5 4

ISBN
ISBN
ISBN

0-13-566795-X
0-13-541400-8 {LIMITED ED.}
0-13- 541392-3 {SPECIAL ED.}

Prentice-Hall International Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall do Brasil, Ltda., Rio de Janiero
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

TABLE OF CONTENTS
Paragraph No . Title Page No.

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.4.2
1.5

2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.11 .1
2.11.1 .1
2.11 .1.2
2.11 .2
2.11 .2.1
2.11.2.2
2.11.2.3
2.11.2.4
2.11.2.5
2.11.3
2.11.3.1
2.11 .3.2
2.11 .3.3
2.11 .3.4
2.11.3.5
2.11.4
2.12
2.13
2.12.1
2.13.2
2.13.3

Section 1
Architectural Description

Introduction 1
Programmer's Model 1
Software Development 6

Consistent Structure 6
Structured Modular Programming 6
Improved Software Testability 7

Virtual Memory/Machine Concepts 8
Virtual Memory 8
Virtual Machine 9

Reference Documentation 9

Section 2
Data Organization and Addressing Capabilities
Introduction 11
Operand Size 11
Data Organization in Registers 11

Data Registers 11
Address Reg isters 11

Data Organization in Memory 12
Addressing 13
Instruction Format 14
Program I Data References 15
Register Notation 15
Address Register Indirect Notation 15
Register Specification 16
Effective Address 16

Register Direct Modes 16
Data Register Direct 16
Address Register Direct 16

Memory Address Modes 17
Address Register Indirect 17
Address Register Indirect With Postincrement 17
Address Register Indirect With Predecrement 17
Address Register Indirect With Displacement 18
Address Register Indirect With Index 18

Special Address Modes 19
Absolute Short Address 19
Absolute Long Address 19
Program Counter With Displacement 20
Program Counter With Index 20
Immediate Data 21

Effective Address Encoding Summary 21
Implicit Reference 21
Stacks and Queues 22

System Stack 22
User Stacks 23
Queues 24

v

· Paragraph No.

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.9.1
4.4.9.2
4.4.10
4.5

TABLE OF CONTENTS
(Continued)

Title

Section 3
Instruction Set Summary

Page No.

Introduction 27
Data Movement Operations 27
Integer Arithmetic Operations 27
Logical Operations 28

Shift and Rotate Operations 28
Bit Manipulation Operations 30
Binary Coded Decimal Operations 30
Program Control Operations 31
System Control Operations 32

Section 4
Exception Processing

Introduction 33
Privilege States 33

Supervisor State : 34
User State 34
Privilege State Changes 35
Reference Classification 35

Exception Processing 35
Exception Vectors 35
Kinds of Exceptions 38
Multiple Exceptions 38
Exception Stack Frames 39
Except ion Processing Sequence 40

Exception Processing Detailed Discussion 40
Reset 40
Interrupts 41
Uninitialized Interrupt 42
Spurious Interrupt 42
Instruction Traps 42
Illegal and Unimplemented Instruct ions 42
Privilege Violations 43
Tracing 43
Bus Error 44

Bus Error (MC68000/MC68008) 44
Bus Error (MC68010) 45

Address Error 47
Return From Exception (MC68010) 47

vi

Paragraph No.

TABLE OF CONTENTS
(Continued)

Title

Appendix A
Condition Codes Computation

Page No.

A.1 Introduction 49
A.2 Condition Code Register 49
A.3 Condition Code Register Notation 49
A.4 Condition Code Computation 50
A.5 Conditional Tests 52

Appendix B
Instruction Set Details

B.1 Introduction 53
8.2 Addressing Categories 53
8.3 Instruction Description 54
8.4 Register Transfer Language Definitions 55

Appendix C
Instruction Format Summary

C.1 Introduction 165

Appendix D
MC68000 Instruction Execution Times

D.1 Introduction 187
D.2 Operand Effective Add ress Calculation Timing 187
D.3 Move Instruction Execution Times 188
D.4 Standard Instruction Execution Times 189
D.5 Immediate Instruction Execution Times 190
D.6 Single Operand Instruction Execution Times 191
D.7 Shift/Rotate Instruction Execution Times 191
D.8 Bit Manipulation Instruction Execution Times 192
D.9 Conditional Instruction Execution Times 192
D.10 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 193
D.11 Multi-Precision Instruction Execution Times 193
D.12 Miscellaneous Instruction Execution Times 194
D.13 Exception Processing Execution Times 195

vii

Paragraph No .

TABLE OF CONTENTS
(Continued)

Title

Appendix E
MC68008 Instruction Execution Times

Page No .

E.1 Introduction 197
E.2 Operand Effective Address Calculation Times 197
E.3 Move Instruction Execution Times 198
E.4 Standard Instruction Execution Times 199
E.5 Immediate Instruction Execution Times 200
E.6 Single Operand Instruct ion Execution Times 201
E.7 Shift/Rotate Instruction Execution Times 201
E.8 Bit Manipulation Instruction Execution Times 202
E.9 Conditional Instruction Execution Times 202
E.10 JM P, JSR, LEA, PEA, and MOVEM Instruction Execution Times 203
E.11 Multi-Precision Instruction Execution Times 203
E.12 Miscellaneous Instruction Execution Times 204
E.13 Exception Processing Execution Times 205

Appendix F
MC68010 Instruction Execution Times

F.1 Introduction 207
F.2 Operand Effective Address Calculation Times 207
F.3 Move Instruction Execution Times 208
F.4 Standard Instruction Execution Times 209
F.5 Immediate Instruction Execution Times 210
F.6 Single Operand Instruction Execution Times 211
F.7 Shift/Rotate Instruction Execution Times 212
F.8 Bit Manipulation Instruction Execution Times 213
F.9 Conditional Instruction Execution Times 213
F.10 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 214
F.11 Multi-Precision Instruction Execution Times 214
F.12 Miscellaneous Instruction Execution Times 215
F.13 Exception Processing Execution Times 216

Appendix G
MC68010 Loop Mode Operation

G MC6801 O ~oop Mode Operation 217

viii

LIST OF ILLUSTRATIONS

Figure No. Title Page No.

1-1 User Programmer's Model (MC68000/MC68008/MC68010) 2
1-2 Supervisor Programmer's Model Supplement (MC68000/MC6808) 2
1-3 Supervisor Programmer 's Model Supplement (MC68010) 3
1-4 StatusRegister 3

2-1 Word Organ izat ion In Memory 12
2-2 Data Organization In Memory 12
2-3 Memory Data Organization of the MC68008 14
2-4 Instruction Format 15
2-5 Single-Effective-Address-Instruction Operation Word - General Format 16

4-1 Exception Vector Format 36
4-2 Peripheral Vector Number Format 36
4-3 Address Translated from 8-Bit Vector Number

(MC68000, MC68008) 36
4-4 Exception Vector Address Calculation (MC68010) 36
4-5 MC68000, MC68008 Group 1 and 2 Exception St ack Frame 39
4-6 MC68010 Stack Frame 39
4-7 Supervisor Stack Order for Bus or Address Error Exception 45
4-8 Exception Stack Order (Bus and Address Error) 46
4-9 Special St atus Word Format 46

B-1 Instruction Description Format. 54

G-1 DBcc Loop Program Example 217

ix

LIST OF TABLES

Table No. Title Page No.

1-1 DataAddressingModes 4
1-2 Instruction Set Summary 5
1-3 Variations of Instruction Types 5

2-1 Effective Address Encoding Summary 22
2-2 Implicit Instruction Reference Summary 22

3-1 Data Movement Operations 28
3-2 Integer Arithmetic Operations 29
3-3 Logical Operations 29
3-4 Shift and Rotate Operations 30
3-5 Bit Manipulation Operations 30
3-6 Binary Coded Decimal Operations 31
3-7 Program Control Operations 31
3-8 System Control Operations 32

4-1 Reference Classification 35
4-2 Exception Vector Assignment 37
4-3 Exception Grouping and Priority 38
4-4 MC68010 Format Codes 40

A-1 Condition Code Computations 51
A-2 Conditional Tests 52

B-1 Effective Addressing Mode Categories 53

C-1 Operation Code Map 165
C-2 Effective Address Encoding Summary 165
C-3 Conditional Tests 166

D-1 Effective Address Calculation Times 187
D-2 Move Byte and Word Instruction Execution Times 188
D-3 Move Long Instruction Execution Times 188
D-4 Standard Instruction Execution Times 189
D-5 Immediate Instruction Execution Times 190
D-6 Single Operand Instruction Execution Times 191
D-7 Shift/Rotate Instruction Execution Times 191
D-8 Bit Manipulation Instruction Execution Times 192
D-9 Condit ional Instruction Execution Times 192
D-10 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 193
D-11 Multi-Precision Instruction Execution Times 193
D-12 Miscellaneous Instruction Execution Times 194
D-13 Move Peripheral Instruction Execution Times 194
D-14 Exception Processing Execution Times 195

E-1 Effective Address Calculation Times 197
E-2 Move Byte Instruction Execution Times 198
E-3 Move Word Instruction Execution Times 198

x

Paragraph No .

LIST OF TABLES
(Continued)

Title Page No .

E-4 Move Long Instruction Execution Times 199
E-5 Standard Instruction Execution Times 199
E-6 Immediate Instruction Clock Periods 200
E-7 Single Operand Instruction Execution Times 201
E-8 Shift/Rotate Instruction Clock Periods 201
E-9 Bit Manipulation Instruction Execution Times 202
E-10 Conditional Instruct ion Execution Times 202
E-11 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 203
E-12 Multi-Precision Instruction Execution Times 203
E-13 Miscellaneous Instruction Execution Times 204
E-14 Move Peripheral Instruction Execution Times 204
E-15 Exception Processing Execution Times 205

F-1 Effective Address Calculation Times 207
F-2 Move Byte and Word Instruction Execution Times 208
F-3 Move Byte and Word Instruction Loop Mode Execution Times 208
F-4 Move Long Instruction Execution Times 208
F-5 Move Long Instruction Loop Mode Execution Times 209
F-6 Standard Instruction Execution Times 209
F-7 Standard Instruction Loop Mode Execution Times 210
F-8 Immediate Instruction Execution Times 210
F-9 Single Operand Instruction Execution Times 211
F-10 Clear Instruction Execution Times : '. 211
F-11 Single Operand Instruction Loop Mode Execution Times 211
F-12 Shift/Rotate Instruction Execution Times 212
F-13 Shift/Rotate Instruction Loop Mode Execution Times 212
F-14 Bit Manipulation Instruction Execution Times 213
F-15 Conditional Instruction Execution Times 213
F-16 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 214
F-17 Multi -Precision Instruction Execution Times 214
F-18 Miscellaneous Instruction Execution Times 215
F-19 Exception Processing Execution Times 216

G-1 MC68010 Loopable Instructions 218

xi

PREFACE

With the advent of 16-bit microprocessor technology, thorough, concise, and useful
manuals must be provided to aid designers in development of their systems. This
manual gives all the key information for software architects, computer designers, and
programmers to complete software systems using Motorola's M68000 Family of
Microprocessors. Hardware designers should consult the Advance Information data
sheets for the appropriate microprocessor - MC68000, MC68008, and MC68010.

To facilitate design and for the fullest understanding, each instruction is described in
detail in bit pattern format. Explicit examples are then shown to more thoroughly
demonstrate how each instruction will operate.

This definitive information will allow the easiest and best designing possible.
Additonally, the software in this manual will be upward compatible with all future
M68000 family processors.

xiii

Information that is unique to the
MC68010 is marked with a solid bar
(I) in the outside margin.
Information that is unique to the
MC68008 is marked with a dashed
bar (:).

® MOTOROLA

M68000

16/32-BIT MICROPROCESSOR
Programmer's Reference Manual

1.1 INTRODUCTION

SECTION 1
ARCHITECTURAL DESCRIPTION

In 1979, Motorola introduced the first implementation of the M68000 16/32-bit
microprocessor architecture - the MC68000. The MC68000, with a 16-bit data bus and
24·bit address bus, was only the first in a family of processors which implement a com
prehensive, extensible computer architecture. It was soon followed by the MC68008, with
an 8-bit data bus and 20-bit address bus, and by the MC68010, which introduced the vir
tual machine aspects of the M68000 architecture. Soon the MC68020 with its 32-bit data
and address buses will be introduced, implementing the next stage of the M68000.

This manual is intended to serve as a programmer's reference for both systems and ap
plications programmers of the three current implementations of the M68000 - the
MC68008, the MC68000, and the MC68010. The hardware system design aspects of these
processors, such as bus structure and control, are presented in the respective advance
information data sheets for each device.

The MC68000 and the MC68008 are identical from the view of the programmer, with the
exception that the MC68000 can directly access 16 megabytes (24 bits of address) and
the MC68008 can directly access 1 megabyte (20 bits of address). The MC68010 has much
in common with the first two devices but also possesses some additional instructions
and registers as well as full virtual machine/memory capability. Since the processors are
so similar to the programmer, only the differences are highlighted. When the M68000 is
referenced, the feature described is common to all. If a particular feature is applicable
only to one processor, the MC part number will be referenced.

1.2 PROGRAMMER'S MODEL

The M68000 executes instructions in one of two modes - user mode or supervisor mode.
The user mode is intended to provide the execution environment for the majority of ap
plication programs. The supervisor mode allows some additional instructions and
privileges and is intended for use by the operating system and other system software.
See SECTION 4 EXCEPTION PROCESSING for further details.

To provide for the upward compatibility of code written for a specific implementation of
the M68000, the user programmer's model is common to all implementations. The user
programmer's model is shown in Figure 1-1

As shown in the user programmer's model , the M68000 offers 16 32-bit general purpose
registers (00-07, AO-A?), a 32-bit program counter, and an 8-bit condition code register.
The first eight registers (00-07) are used as data registers for byte (8-bit), word (16-bit),

and long word (32-bit) operations. The second set of seven registers {AO-A6) and the stack
pointer {USP) may be used as software stack pointers and base address registers. In ad
dition, the address registers may be used for word and long word operations. All of the 16
registers may be used as index registers.

31 161 5 87 0

31 1615 0

DO
Dl

D2

D3

D4

D5

D6

D7

AO
Al

A2

A3

A4

A5

A6

Data
Registers

Address
Regis ters

~------~------~ A7 User Stack
L---------'--------' (US PI Pointer
31 0

7 0

PC
Program
Counter

I ICC R Condition Code
_ _ Register

Figure 1-1. User Programmer's Model {MC68000/MC68008/MC68010)

The supervisor programmer's model includes some supplementary registers in addition
to the above mentioned registers. The MC68000 and the MC68008 contain identical
supervisor mode register resources. These are shown in Figure 1-2 and include the status
register {high order byte) and the supervisor stack pointer (A7').

31 1615 0
A7' Supervisor Stack
(SS Pl Pointer

15 8 7 0

I ! CCR JsR Sta tus Register

Figure 1-2. Supervisor Programmer's Model Supplement (MC68000/MC68008)

The supervisor programming model supplement of the MC68010 is shown in Figure 1-3. In
addition to the supervisor stack pointer and- status register, it includes the vector base
register and the alternate function code registers.

The vector base register is used to determine the location of the exception vector table in
memory to support multiple vector tables. The alternate function code registers allow the
supervisor to access user data space or emulate CPU space cycles.

2

31 1615 0
Al' Supervisor Stack
ISSPJ Pointer

15 8 7 0

I i CCR lsR Status Reg ister

31 0

VBR Vector Base Register

2 0

B SFC Alterna te Function

DFC Code Registers

Figure 1·3. Supervisor Programmer's Model Supplement (MC68010)

The status register, shown in Figure 1-4, contains the interrupt mask (eight levels
available) as well as the condition codes: overflow (V), zero (Z), negative (N), carry (C), and
extend (X). Additional status bits indicate that the processor is in a trace (T) mode and/or
in a supervisor (S) state.
Five basic data types are supported. These data types are:

• Bits
e BCD Digits (4 Bits)
• Bytes (8 Bits)
• Words (16 Bits)
• Long Words (32 Bits)

In addition, operations on other data types such as memory addresses, status word data,
etc. are provided for in the instruction set.

/] 5

Trace Mode -----'

Supervisor
State

Interrupt
Mask ·

Condition Z
Codes ero

System Byte

A
13 10

User Byte

A
BV 4

x N z v

Overflow -------------------~

o'-
c

{N::~~:: ----------------~
Carry --------------------~

Figure 1 ·4. Status Register

3

I

The 14 flexible addressing modes, shown in Table 1-1, include six basic types:
• Register Direct
• Register Indirect
• Absolute
• Immediate
• Program Counter Relative
• Implied

Included in the register indirect addressing modes is the capability to do post
incrementing, predecrementing, offsetting, and indexing. Program counter relative mode
can also be modified via indexing and offsetting .

Mode

Register Direct Addressing
Data Register Direct
Address Register Direct

Absolute Data Addressing
Absolute Short
Absolu te Long

Program Counter Relat ive Add ressing
Relative with Offset
Relative with Index and Offset

Register Indirect Addressing
Register Indirect
Postincremen t Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

Immediate Data Addressing
Immediate
Quick Immedia te

Implied Addressing
Implied Register

Table 1·1. Data Addressing Modes

Generation

EA= On
EA=An

EA = I Next Word)
EA = I Next Two Words)

EA= iPCl + di5
EA= IP Cl+ IXnl + dg

EA = IAnl
EA=IAnl. An - An+N
An - An - N, EA =IAnl
EA = IAnl + d15
EA= I An I+ IXnl + dg

DAT A= Next Wordlsl
Inherent Data

EA = SR, USP, SSP, PC,
VBR, SFC, DFC

NOTES:
EA= Effective Address
An= Address Register
On= Da ta Register
Xn = Address or Da ta Register used as Index Register
SR= Status Register
PC= Program Counter
I) =Contents of
dg=8-Bit Offset !Displacement)
d15= 16-Bi t Offset !Displacement)
N = 1 for byte, 2 for word, and 4 for long word. If An is

the stack pointer and the operand size is byte, N = 2
to keep the stack pointer on a word boundary.

- = Replaces

The M68000 instruction set is shown in Table 1-2. Some additional instructions are varia
tions or subsets of these and they appear in Table 1-3. Special emphasis has been given
to the instruction set 's support of structured high-level languages to facilitate ease of
programming. Each instruction, with a few exceptions , operates on bytes, words, and
long words and most instructions can use any of the 14 addressing modes. Combining in
struction types, data types, and addressing modes, over 1000 useful instructions are pro
vided . These instructions include signed and unsigned multiply and divide, "quick"
arithmetic operat ions, BCD arithmetic, and expanded operations (through traps). Addi
tionally, its high-symmetric, proprietary microcoded structure provides a sound, flexible
base for the futu re.

4

Table 1·2. Instruction Set Summary

Mnemonic Description

ABCD* Add Decimal with Extend
ADD * Add
AND* Logical And
ASL* Arithmetic Shift Left
ASR* Arithmetic Shift Right

Bee Branch Condi tiona lly
BCHG Bit Test and Change
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BS R Branch to Subroutine
BTST Bit Test

CHK Check Register Against Bounds
CLR* Clear Operand
CM P* Compare

DB cc Decrement and Branch Condit iona lly

DIVS Signed Divide
DIVU Unsigned Divide

EOR * Exclusive Or
EXG Exchange Registers
EXT Sign Ex tend

JMP Jump
JS R Jump to Subroutine

LEA Load Effective Address
LINK Link Stack
LSL* Logical Shift Left
LSR* Logical Shift Right

'These instructions available in loop mode on MC68010. See
APPENplX G MC68010 LOOP MODE OPERATION.

Mnemonic Description

MOVE* Move Source to Destination
MOVEC Move Control Register

MULS Signed Multiply
MULU Unsigned Multiply

NBCD* Negate Decimal with Extend
NEG* Negate
NOP No Operation
NOT* One's Complement

OR* Logical Or

PEA Push Effective Address

RESET Reset Externa l Devices
ROL * Rotate Left wi thout Extend
ROR * Rotate Right wi thout Extend
ROXL * Rotate Left wi th Extend
ROX R* Rotate Righ t wi th Extend

RTD Return and Deall ocate

RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine

SBCD * Subtract Decimal wi th Extend

sec Set Conditional
STOP Stop
SUB * Subtract
SWAP Swap Data Register Halves

TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST* Test

UN LK Unlink

Table 1·3. Variations of Instruction Types

Instruction
Variation Description

Type

ADD ADD * Add
ADDA* Add Address
ADDO Add Quick
ADDI Add Immediate
ADDX* Add with Extend

AND AND * Logical And
ANDI And Immediate
ANDI to CCR And Immediate to

Condition Codes
ANDI to SR And Immediate to

Status Register

CMP CMP * Compare
CMPA* Compare Add ress
CMPM * Compare Memory
CMPI Compare Immediate

EOR EOR * Exclusive Or
EORI Exclusive Or Immediate
EORI to CCR Exclusive Or Immediate to

Condition Codes
EOR I to SR Exclusive Or Immediate to

Sta tus Register

"These instructions available in loop mode on MC68010. See
APPENDIX G MC68010 LOOP MODE OPERATION.

Instruction
'!ie_e

MOVE

NEG

OR

SUB

5

Variation Description

MOVE * Move Source ·to Destination
MOVEA* Move Address
MOVEC Move Control Register
MOVEM Move Multiple Reg isters
MOVEP Move Peripheral Data
MOVEO Move Quick
MOVES Move Alternate Address Space
MOVE from SR Move from Sta tus Register
MOVE to SR Move to Status Register
MOVE from

CCR Move from Condit ion Codes
MOVE to CCR Move to Condition Codes
MOVE USP Move User Stack Pointer

NEG * Nega te
NEGX* Nega te wi th Extend

OR * Logical Or
ORI Or Immedia te
ORI to CCR Or Immediate to

Condition Codes
OR I to SR Or Immed iate to

Status Register

SUB * Subtract
SUBA* Subtract Address
SUB I Subtract Immediate
SUBO Subtract Qu ick
SUBX* Subtract with Extend

I

I

I

I

1.3 SOFTWARE DEVELOPMENT

Many innovative features have been incorporated to make programming easier, faster,
and more reliable.

1.3.1 CONSISTENT STRUCTURE. The highly regular structure of the M68000 greatly
simplifies the effort required to write programs in assembly language as well as high
level languages. Operations on integer data in registers and memory are independent of
the data. Separate special instructions that operate on byte (8 bit), word (16 bit), and long
word (32 bit) integers are not necessary. The progammer need only remember one
mnemonic for each type of operation and then specify data size , source addressing
mode, and destination addressing mode. This has helped keep the total number of in
structions small.

The dual operand nature of many of the instructions significantly increases the flexibility
and power of the M68000. Consistency is again maintained since all data registers and
memory locations may be either a source or destination for most operations on integer
data.

The addressing modes have been kept simple without sacrificing efficiency. All fourteen
addressing modes operate consistently and are independent of the instruction operation
itself. Additionally , all address registers may be used for the direct, register indirect , and
indexed addressing modes (immediate, program counter relative, and absolute address
ing by definition do not use address registers). For increased flexibility, any address or
data register may be used as an index register. Address register consistency is maintain
ed for stacking operations since any of the eight address registers may be utilized as
user program stack pointers with the register indirect postincrement/predecrement ad
dressing modes. Address register A?, however, is a special register that , in addition to its
normal addressing capability, functions as the system stack pointer for stacking the pro
gram counter for subroutine calls as well as stacking the program counter and status
register for traps and interrupts (while in the supervisor state).

1.3.2. STRUCTURED MODULAR PROGRAMMING. The art of prog ramming
microprocessors has evolved rapidly in the past few years. Numerous advanced techni
ques have been developed to allow easier, more consistent and reliable generation of
software. In general, these techniques require that the programmer be more disciplined
in observing a defined programming structure such as modular programming. Modular
programming allows a requ ired function or process to be broken down in short modules
or subroutines that are concisely defined and easily programmed and tested. Such a
technique is greatly simplified by the availability of advanced structured assemblers and
block structured high-level languages such as Pascal. Such concepts are virtually
useless, however, unless parameters are easily transferred between and within software
modules that operate on a reen t rant and recursive basis. (To be reentrant a routine must
be usable by interrupt and non-interrupt driven programs without the loss of data. A
recursive routine is one that may call or use itself.) The M68000 provides the necessary
architectural features to allow efficient reentrant modular programming. The LINK and
UNLK instructions reduce subroutine call overhead in two complementary instructions
by allowing the manipulation of linked lists of data areas on the stack. The MOVEM

6

(Move Multiple Register) instruction also reduces subroutine call programming overhead.
This allows moving, via an effective address, multiple registers that are specified by the
programmer. Sixteen software trap vectors are provided with the TRAP instruction and
are useful in operating system call routines or user generated macro routines. Other in
structions that support modern structured programming techniques are PEA (Push Effec
tive Address), LEA (Load Effective Address), RTR (Return and Restore), RTE (Return from
Exception) as well as JSR, BSR, and RTS.

The powerful vectored priority interrupt structure of the microprocessor allows
straight-forward generat ion of reentrant modular input/output rout ines. Seven maskable
levels of priority with 192 vector locations and seven autovector locations provide max
imum flexibility for 1/0 control (a total of 255 vector locations are available for interrupts,
hardware traps, and software traps).

1.3.3. IMPROVED SOFTWARE TESTIBILITY. The M68000 incorporates several features
that reduce the chance for errors. Some of these features, such as consistent architec
ture and the structured modular programming capability, have already been discussed .

Of major importance to the system programmer are features that have been incorporated
specifically to detect the occurrence of programming errors or bugs. Several hardware .
traps, provided to indicate abnormal internal condit ions , detect the following error condi
tions:

• Word Access with an Odd Address
• Illegal Instructions
• Unimplemented Instructions
• Illegal Memory Access (Bus Error)
• Divide by Zero
e Overflow Condition Code (Separate Instruct ion TRAPV)
• Register Out of Bounds (CH K Instruction)
• Spurious Interrupt

Additional ly, the sixteen software TRAP instructions may be utilized by the programmer
to provide applications-oriented error detection or correction routines.

An additional error detection tool is the CHK (Check Register Against Bounds) instruc
tion used for array bound checking by verifying that a data register contains a valid
subscript. A trap occurs if the register contents are negative or greater than a limit.

Finally, the M68000 includes a facility that allows instruction-by-instruction tracing of a
program being debugged. This trace mode results in a trap being made to a tracing
routine after each instruction executed. The trace mode is available to the programmer
when the microprocessor is in the supervisor state as well as the user state but may on ly
be entered while in the supervisor state. The supervisor/user states provide an additional
degree of error protection for the microprocessor by allowing memory protection of
selected areas of memory when an external memory management device is used.

7

1.4 VIRTUAL MEMORY/MACHINE CONCEPTS

The MC68010 introduced the virtual memory/machine concept of the M68000 architec
ture.

In most systems using the MC68010 as the central processor, only a fraction of the 16
megabyte address space will actually contain physical memory. However, by using vir·
tual memory techniques the system can be made to appear to the user to have 16
megabytes of physical memory available to him/her. These techniques have been used
for several years in large mainframe computers and more recently in minicomputers and
now, with the MC68010, can be fully supported in microprocessor-based systems.

In a virtual memory system, a user program can be written as though it has a large
amount of memory available to it when only a small amount of memory is physically pre
sent in the system. In a similar fashion, a system can be designed in such a manner as to
allow user programs to access other types of devices that are not physically present in
the system such as tape drives, disk drives, printers, or CRTs. With proper software
emulation, a physical system can be made to appear to a user program as any other com·
puter system and the program may be given full access to all of the resources of that
emulated system. Such an emulated system is called a virtual machine.

1.4.1 VIRTUAL MEMORY. The basic mechanism for supporting virtual memory in com
puters is to provide only a limited amount of high-speed physical memory that can be ac·
cessed directly by the processor while maintaining an image of a much larger "virtual"
memory on secondary storage devices such as large capacity disk drives. When the pro
cessor attempts to access a location in the virtual memory map that is not currently
residing in physical memory (referred to as a page fault), the access to that location is
temporarily suspended while the necessary data is fetched from the secondary storage
and placed in physical memory; the suspended access is then completed. The MC68010
provides hardware support for virtual memory with the capability of suspending an in·
struction's execution when a bus error is signaled and then completing the instruction
after the physical memory has been updated as necessary.

The MC68010 uses instruction continuation rather than instruction restart to support vir·
tual memory. With instruction restart, the processor must remember the exact state of
the system before each instruction is started in order to restore that state if a page fault
occurs during its execution. Then, after the page fault has been repaired, the entire in
struction that caused the fault is reexecuted. With instruction continuation, when a page
fault occurs the processor stores its internal state and then after the page fault is
repaired, restores that internal state and continues execution of the instruction. In order
for the MC68010 to utilize instruction continuation, it stores its internal state on the
supervisor stack when a bus cycle is terminated with a bus error signal. It then loads the
program counter from vector table entry number two (offset $008) and resumes program
execution at that new address. When the bus error exception handler routine has com
pleted execution, an RTE instruction is executed which reloads the MC68010 with the in
ternal state stored on the stack, re-runs the faulted bus cycle, and continues the
suspended instruction. Instruction continuation has the additional advantage of allow
ing hardware support for virtual 1/0 devices. Since virtual registers may be simulated in

8

the memory map, an access to such a register will cause a fault and the function of the
register can be emulated by software.

1.4.2 VIRTUAL MACHINE. One typical use for a virtual machine system is in the develop
ment of software such as an operating system for another machine with hardware also
under development and not available for programming use. In such a system, the govern
ing operating system emulates the hardware of the new system and allows the operating
system to be executed and debugged as though it were running on the new hardware.
Since the new operating system is controlled by the governing operating system, the new
one must execute at a lower privilege level than the governing operating system, so that
any attempts by the new operating system to use virtual resources that are not physically
present, and should be emulated, will be trapped by the governing operating system and
handled in software. In the MC68010, a virtual machine may be fully supported by running
the new operating system in the user mode and the governing operating system in the
supervisor mode so that any attempts to access supervisor resources or execute privileg
ed instructions by the new operating system will cause a trap to the governing operating
system.

In order to fully support a virtual machine, the MC68010 must protect the supervisor
resources from access by user programs. The one supervisor resource that is not fully
protected in the MC68000 is the system byte of the status register. In the MC68000 and
MC68008, the MOVE from SR instruction allows user programs to test the S bit (in addi
tion to the T bit and interrupt mask) and thus determine that they are running in the user
mode. For full virtual machine support, a new operating system must not be aware of the
fact that it is running in the user mode and thus should not be allowed to access the S bit.
For this reason, the MOVE from SR instruction has been added to allow user program
unhindered access to the condition codes. By making the MOVE from SR instruction
privileged, when the new operating system attempts to access the S bit, a trap to the
governing operating system will occur, and the SR image passed to the new operating
system by the governing operating system will have the S bit set.

1.5 REFERENCE DOCUMENTATION

Electrical and mechanical information for the three microprocessors covered in this
reference manual is available in the individual data sheets listed below.

Title
MC68000 16-Bit Microprocessor
MC68008 16-Bit Microprocessor with 8-Bit Data Bus
MC68010 16-Bit Virtual Memory Microprocessor

Ref. No.
ADl-814
ADl-939
ADl-942

Consult your nearest Motorola Sales Office or franchised distributor for a copy of the
desired data sheet. Single copies are also available from the Motorola Semiconductor
Prodl' - ~s Literature Distribution Center, P.O. Box 20924, Phoenix, Arizona 85306. Their
telephone number is (602)994-6561 .

9

2.1 INTRODUCTION

SECTION 2
DATA ORGANIZATION AND

ADDRESSING CAPABILITIES

This section describes the data organization and addressing capabilities of the M68000
architecture.

2.2 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a
long word equals 32 bits. The operand size for each instruction is either explicitly encod
ed in the instruction or implicitly defined by the instruction operation. All explicit instruc
tions support byte, word, or long word operands. Implicit instructions support some
subset of all three sizes.

2.3 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address
registers together with the active stack pointer support address operands of 32 bits.

2.3.1 DATA REGISTERS. Each data register is 32 bits wide. Byte operands occupy the low
order 8 bits, word operands the low order 16 bits, and long word operands the entire 32
bits. The least significant bit is addressed as bit zero; the most significant bit is address
ed as bit 31.

When a data register is used as either a source or destination operand, only the ap
propriate low order portion is changed; the remaining high-order portion is neither used
nor changed.

2.3.2. ADDRESS REGISTERS. Each address register and the stack pointer is 32 bits wide
and holds a full 32 bit address. Address registers do not support byte sized operands.
Therefore, when an address register is used as a source operand, either the low order
word or the entire long word operand is used depending upon the operation size. When
an address register is used as the destination operand, the entire register is affected
regardless of the operation size. If the operation size is word, any other operands are sign
extended to 32 bits before the operation is performed.

11

2.4 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address the
same as the word as shown in Figure 2-1 . The low order byte has an odd address that is
one count higher than the word address . Instruct ions and multibyte data are accessed
only on word (even byte) boundaries. If a long word datum is located at address n (n even),
then the second word of that datum is located at address n + 2.

15 14 13 12 11 10 9 8 6 0

W ord 000000
Byte 000000 l Byte 000001

Byte 000002
W orJ 000002

Byte 000003

W ord FFFFFE
Byte FFFFFE I Byte FFFFFF

Figure 2-1. Word Organization In Memory

The data types supported by the M68000 are: bit data, integer data of 8, 16, and 32 bits,
32-bit addresses , and binary coded decimal data. Each of these data types is put in
memory as shown in Figure 2-2. The numbers indicate the order in which the data would
be accessed from the processor. For convenience, the organization of data in memory for
the MC68008 is shown in Figure 2-3. The appearance to the programmer, however, is iden
tical to the MC68000 and MC68010.

Bit Data
1 Byte= 8 Bits

6 5 4 3 0

Integer Data
1 Byte = 8 Bits

15 14 13 12 11 10 9 8 6 5 4 3 0

I"'"
Byte 0

''"I
Byte 1

Byte 2 Byte 3

1 Word=1 6 Bits

15 14 13 12 11 10 9 8 6 5 4 3 2 0

I"'"
Word 0

Word 1

Word 2

Figure 2-2. Data Organization In Memory (Sheet 1 of 2)

12

Even Bytes

7 6 5 4

15 14 13 12 11
MSB

- - Long Word 0- - -

10

0 17 6
1 Long Word= 32 Bits
9 3 7 6

High Order

Low Order

5

5

-Long Word 1- - - - - - - - - - - - -

Odd Bytes

4 3 2 0

4 3 2 0

LSB

- - Long Word 2 -

Addresses
1 Address= 32 Bits

15 14 13 12 11 10 9 8 7 6 5 4 0
MSB

High Order
- - Address 0 -

Low Order
LSB

- - Address 1 - - - - - - - - - - - - - - - - - -

- - Address 2 -

MSB =Most Significant Bit
LS B =Least Significant Bit

Oecimal Oata
2 Binary Coded Decimal Digits= 1 Byte

15 14 13 12 11 10 9
MSD

BCD 0

BCD 4

MS D =Most Significant Digit
LSD= Least Significant Digit

BCD 1

BCD 5

8 7 6 5

LSD BCD 2

BCD 6

4 3 2

BCD 3

BCD 7

Figure 2·2. Data Organization In Memory (Sheet 2 of 2)

2.5 ADDRESSING

0

Instructions for the M68000 contain two kinds of information: the type of function to be
performed and the location of the operand(s) on which to perform that function . The
methods used to locate (address) the operand(s) are explained in the following
paragraphs.

Instructions specify an operand location in one of three ways:
• Register Specification - the number of the register is given in the register field of

the instruction.
• Effective Address - use of the different effective address modes.
• Implicit Reference - the definition of certain instructions implies the use of

specific registers.

13

Bit Data 1 Byte=B Bits

6 5 4 3 2 0

Integer Da ta 1 Byte= 8 Bits

7 6 5 4 3 2 1 0

ByteO Lower Addresses

Byte 1

Byte 2

Byte3 Higher Addresses

1Word=2 Bytes= 16 Bits

ByteOIMS Bytel
WordO -

Lower Addresses

By te 1 I LS By tel

ByteOIMS Byte)
Wordl -

By te 1 I LS Byte I Higher Addresses

1 Long Word = 2 Words = 4 Bytes= 32 Bits

By teO High Order Lower Addresses

Byte 1 Word

By te 2
Long Word 0

Low Order

Byte3 Word

ByteO High Order

Byte 1 Word

Byte2
Long Word 1

Low Order

By te3 Word Higher Addresses

Figure 2·3. Memory Data Organization of the MC68008

2.6 INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2·4. The length of the

instruction and the operation to be performed is specified by the first word of the instruc

tion which is called the operation word. The remaining words further specify the

operands. These words are either immediate operands or extensions to the effective ad·

dress mode specified in the operation word.

14

Even Bytes IAO= OJ Odd Bytes IAO= 11

6 5 4 3 2 0 5 4 3 2

15 14 13 12 11 10 9 8 5 4 3
Operation Word

!First Word Specifies Operation and Modes)

Immediate Operand
llf Any , One or Two Words)

Source Effective Address Extension
llf Any, One or Two Words)

Destination Ef fective Address Extension
llf Any, One or Two Words)

Figure 2·4. Instruction Format

2.7 PROGRAM/DATA REFERENCES

0

0

The M68000 separates memory references into two classes: program references and
data references. Program references, as the name implies, are references to that section
of memory that contains the program being executed. Data references refer to that sec
tion of memory that contains data. Generally, operand reads are from the data space. All
operand writes are to the data space.

2.8 REGISTER NOTATION

Appendix B contains a definition of the register transfer language (RTL) used in describ
ing instruction operations. The RTL description of registers identifies the registers as
follows:
An - Address Register (n specifies the register number)
On - Data Register (n specifies the register number)
Rn - Any Register, Address or Data (n specifies the register number)
PC - Program Counter
SR - Status Register
CCR - Condition Code Half of the Status Register
SP - The Active Stack Pointer (either user or supervisor)
USP - User Stack Pointer
SSP - Supervisor Stack Pointer
d - Displacement Value
N - Operand Size in Bytes (1, 2, 4)

2.9 ADDRESS REGISTER INDIRECT NOTATION

When an address reg ister is used to point to a memory location, the addressing mode is
called address register indirect. The term indirect is used because the operation of the in
struction is not directed to the address itself , but to the memory location pointed to by
the adddress register. The RTL symbol for the indirect mode is an address reg ister
designation in parenthesis.

15

2.10 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

2.11 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field
in the operation word. For example, Figure 2-5 shows the general format of the single ef
fective address instruction operation word. The effective address is composed of two
3-bit fields: the mode field and the register field. The value in the mode field selects the
different address modes. The register field contains the number of a register.

The effective address field may require additional information to fully specify the
operand. This additional information, called the effective address extension, is contain
ed in a following word or words and is considered part of the instruction as shown in
Figure 2-4. The effective address modes are grouped into three categories: register
direct, memory addressing , and special.

. . Even Byte Odd Byte 6 5 4 3 0 6 5 4 3 2 0 . .
15 14 13 12 11 10 9 8 6 5 4 3 2 0

Effective Address
x x x x x x x x x x Mode Register

Figure 2·5. Single-Effective-Address-Instruction Operation - General Format

2.11.1 REGISTER DIRECT MODES. These effective addressing modes specify that the
operand is in one of the 16 multifunction registers.

2.11.1.1. Data Register Direct. The operand is in the data register specified by the effec
tive address register field.

Generation:
Assembler Syntax:
Mode:
Register:

Data Register On

EA=Dn
On
000
n

Operand

2.11.1.2. Address Register Direct. The operand is in the address register specified by the
effective address register field .

Generation:
Assembler Syntax:
Mode:
Register:

Address Register An

EA=An
An
001
n

Operand

16

2.11.2 MEMORY ADDRESS MODES. These effective addressing modes specify that the
operand is in memory and provide the specific address of the operand.

2.11.2.1 Address Register Indirect. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the ex
ception of the jump and jump to subroutine instructions.

Generation: EA= (An)
Assembler Syntax: (An)
Mode 010
Register n 31 O

Address Register An Memory Address

Memory Address Operand

2.11.2.2 Address Register Indirect With Postincrement. The address of the operand is in
the address register specified by the register field . After the operand address is used, it
is incremented by one, two, or four depending upon whether the size of the operand is
byte, word , or long word. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack pointer on a
word boundary. The reference is classified as a data reference.

Generation: EA= (An)
An=An+ N

Assembler Syntax: (An)+

Address Register An

Operand Length (1, 2, or 4)

Memory Address

Mode: 011
Register: n

31 0

Memory Address

Operand

2.11.2.3 Address Register Indirect With Predecrement. The address of the operand is in
the address register specified by the register field . Before the operand address is used, it
is decremented by one, two, or four depending upon whether the operand size is byte,
word, or long word. If the address register is the stack pointer and the operand size is
byte , the address is decremented by two rather than one to keep the stack pointer on a
word boundary. The reference is classified as a data reference.

Generation: An= An - N
EA=(An)

Assembler Syntax: - (An)

17

Mode:
Register:

100
n

31 0

Address Register An Memory Address

Operand Length (1, 2, or 4)

Memory Address Operand

2.11.2.4 Address Register Indirect With Displacement. This address mode requires one
word of extension. The address of the operand is the sum of the address in the address
register and the sign-extended 16-bit displacement integer in the extension word. The
reference is classified as a data reference with the exception of the jump and jump to
subroutine instructions.

Generation:
Assembler Syntax:
Mode:
Register:

Address Register An

Displacement

Memory Address

EA=(An)+d
d16(An)
101
n

31 0

Memory Address

15 0

Sign Extended Integer

Operand

2.11.2.5 Address Register Indirect With Index. This address mode requires one word of
extension formatted as shown below Even Byte Odd Byte

7 6 5 3 2 0 . 4 7 6 5 4 3 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2

DIA Register W/L 0 0 0 Displacement Integer

Bit 15 - Index Register Indicator
0 - data register
1 - address register

Bits 14 through 12 - Index Register Number
Bit 11 - Index Size

0 - sign-extended, low order integer in index register
1 - long value in index register

0

0

The address of the operand is the sum of the address in the address register, the sign
extended displacement integer in the low order eight bits of the extension word, and the
contents of the index register. The reference is classified as a data reference with the ex
ception of the jump and jump to subroutine instructions. The size of the index register
does not affect the execution time of the instructions.

Generation: EA= (An)+ (Ri) + d Mode: 110
Assembler Syntax: da(An, Rn.W) Register: n

da(An, Rn.L)

18

31 0

Address Register An Memory Address

7

Extension Word Sign Extended Integer

Index Register Sign Extended Integer

Memory Address Operand

2.11 .3 SPECIAL ADDRESS MODES. The special address modes use the effective address
register field to specify the special addressing mode instead of a register number.

2.11 .3.1 Absolute Short Address. This address mode requires one word of extension. The
address of the operand is in the extension word . The 16-bit address is sign extended
before it is used. The reference is classified as a data reference with the excepion of the
jump and jump to subroutine instructions.

Generation : EA given
Assembler Syntax: xxx.W

15 0

Mode: 111 Extension Word Sign-Extended Memory Address
Register: 000

Memory Address Operand

2.11.3.2 Absolute Long Address. The address mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The
high-order part of the address is the first extension word ; the low order part of the ad
dress is the second extension word. The reference is classified as a data reference with
the exception of the jump and jump to subroutine instructions.

Generation:
Assembler Syntax:
Mode:
Register:

EA given
xxx.L
111
001

15 0

First Extension Word Address High

15 0

Second Extension Word Address Low

31 0

Concatenation

Memory Address Operand

19

2.11.3.3 Program Counter With Displacement. This address mode requires one word of

extension. The address of the operand is the sum of the address in the program counter

and the sign-extended 16-bit displacement integer in the extension word. The value in the

program counter is the address of the extension word. The reference is classified as a

program reference.

Generation:
Assembler Syntax:
Mode:
Register:

Program Counter

Extension Word

Memory Address

EA=(PC)+d
LABEL (PC)
111
010 31 0

Address of Extension Word

15

Sign Extended Integer

Operand

2.11.3.4 Program Counter With Index. This address mode requires one word of extension
formatted as shown below .

.
: Even Byte Odd Byte
: . 7 6 5 4 3 2 7 6 5 4 3 2 . . .

15 14 13 12 11 10 9 8 7 6 5 4 3 2

DIA, Register W/L 0 0 0 Displacement Integer

Bit 15 - Index Register Indicator
0 - data register
1 - address register

Bits 14 through 12 - Index Register Number
Bit 11 - Index Size

0 - sign-extended, low order word integer in index register
1 - long value in index register

0

0

The address is the sum of the address in the program counter, the sign-extended

displacement integer in the lower eight bits of the extension word, and the contents of
the index register. The value in the program counter is the address of the extension word .

This reference is classified as a program reference. The size of the index register does
not affect the execution time of the instruction.

Generation:
Assembler Syntax:

Mode:
Register:

EA= (PC)+ (Ri) + d
LABEL (PC, Rn.W)
LABEL (PC, Rn.L)
111
011

20

31 0

Program Counter Address of Extension Word

7

Extension Word Sign Extended Integer

Index Register Sign Extended Integer

Memory Address Operand

2.11.3.5 Immediate Data. This address mode requires either one or two words of exten
sion depending on the size of the operation.

Byte Operation - operand is low order byte of extension word
Word Operation - operand is extension word
Long Word Operation - operand is in the two extension words, high order 16-bits are
in the first extension word, low order 16 bits are in the second extension word .

Generation: Operand given
Assembler Syntax: #xxxx
Mode: 111
Register: 100

The extension word formats are shown below:

Even Byte

o I

Odd Byte

7 6 5 4 3 2 1 7 6 5 4 3 2 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I o 0 0 0 0 0 0 0 Byte

or

Word

or

I Long Word---------~~~~~;.----------------!

2.11.4 EFFECTIVE ADDRESS ENCODING SUMMARY. Table 2-1 is a summary of the effec
tive addressing modes discussed in the previous paragraphs.

2.12 IMPLICIT REFERENCE

Some instructions make implicit reference to the program counter (PC), the system stack
pointer (SP), the supervisor stack pointer (SSP), the user stack pointer (USP), or the status
register (SR). Table 2-2 provides a list of these instructions and the registers implied.

21

Table 2·1. Effective Address Encoding Summary

Addressing Mode Mode Register

Data Register Direct ()()() register number
Address Register Direct 001 register number

Address Register Indirect 010 register number
Address Register Indirect with Postincrement 011 register number

Address Register Indirect with Predecrement 100 register number

Address Register Indirect wi th Displacement 101 register number

Address Register Indi rect with Index 11 0 register number
Absolute Short 11 1 ()()()

Absolute Long 111 001
Program Counter wi th Displacement 111 010

Program Coun ter wi th Index 111 011
Immediate 111 100

Table 2·2. Implicit Instruction Reference Summary

Instruct ion Implied Register(s)

Branch Condit ional !Beel. Branch Always IBRAl PC

Branch to Subroutine IBSRl PC, SP

Check Register Against Bounds ICHK) SSP, SR

Test Cond ition, Decrement and Branch IDBccl PC

Signed Divide IDIVSI SSP, SR

Unsigned Divide IDIVUI SSP, SR

Jump IJMPI PC

Jump to Subroutine IJSRI PC, SP

Link and Allocate IJSRI PC, SP

Move Cond ition Codes !MOVE CCRI SR

Move Control Register IMOVECI VBR, SFC, DFC

Move Alternate Address Space IMOVESl SFC. DFC

Move Status Register !MOVE SRI SR

Move User Stack Pointer !MOVE USPI USP

Push Effective Address IPEAI SP

Return and Deallocate IRTDI PC, SP

Return from Exception IRTEI PC, SP, SR

Return and Restore Condition Codes !RTRI PC, SP, SR

Return from Subroutine IRTSI PC, SP

Trap ITRAPI SSP, SR

Trap on Overflow ITRAPVI SSP, SR

Unlink IUN LKI SP

Logical Immediate to CCR SR

Logical Immediate to SR SR

2.13 STACK AND QUEUES

In addition to supporting the array data structure with the index addressing mode, the
M68000 also supports stack and queue data structures with the address register indirect
postincrement and predecrement addressing modes. A stack is a last·in·first·out (LIFO)
list, a queue is a first-in-first-out (FIFO) list. When data is added to a stack or queue , it is
"pushed" onto the structure; when it is removed, it is "pulled" from the structure.

The system stack is used implicitly by many instructions; user stacks and queues may be
created and maintained through the addressing modes.

2.13.1 SYSTEM STACK. Address register seven (A?) is the system stack pointer (SP). The
system stack pointer is either the supervisor stack pointer (SSP) or the user stack pointer
(USP), depending on the state of the S bit in the status register. If the S bit indicates

22

supervisor state, the SSP is the active system stack pointer and the USP cannot be
referenced as an address register. If the S bit indicates user state, the USP is the active
system stack pointer and the SSP cannot be referenced. Each system stack fills from
high memory to low memory. The address mode -(SP) creates a new item on the active
system stack and the address mode (SP)+ deletes an item from the active system stack.

The program counter is saved on the active system stack on subroutine calls and
restored from the active system stack on returns. On the other hand, both the program
counter and the status register are saved on the supervisor stack during the processing
of traps and interrupts. Thus, the correct execution of the supervisor state code is not
dependent on the behavior of user code and user programs may use the user stack
pointer arbitrarily.

In order to keep data on the system stack aligned properly, data entry on the stack is
restricted so that data is always put in the stack on a word boundary. Thus, byte data is
pushed on or pulled from the system stack in the high half of the word; the lower half is
unchanged.

2.13.2 USER STACKS. User stacks can be implemented and manipulated by employing
the address register indirect with postincrement and predecrement addressing modes.
Using an address register (one of AO through A6), the user may implement stacks which
are filled either from high memory to low memory, or vice versa. The important things to
remember are:

• using predecrement, the register is decremented before its contents are used as the
pointer into the stack;

• using postincrement, the register is incremented after its contents are used as the
pointer into the stack;

• byte data must be put on the stack in pairs when mixed with word or long data so
that the stack will not get misaligned when the data is retrieved. Word and long ac
cesses must be on word boundary (even) addresses.

Stack growth from high to low memory is implemented with
- (An) to push data on the stack,
(An)+ to pull data from the stack.

After either a push or a pull operation, register An points to the last (top) item on the
stack. This is illustrated as:

Low Memory

(Free)

An- Top of Stack . . .
Bottom of Stack

High Memory

23

Stack growth from low to high memory is implemented with
(An)+ to push data on the stack,
- (An) to pull data from the stack.

After either a push or pull operation, register An points to the next available space on the
stack. This is illustrated as:

Low Memory

Bottom of Stack . . .
Top of Stack

An --.... (Free)

High Memory

2.13.3 QUEUES. User queues can be implemented and manipulated with the address
register indirect with postincrement or predecrement addressing modes. Using a pair of
address registers (two of AO through A6), the user may implement queues which are filled
either from high memory to low memory, or vice versa. Because queues are pushed from
one end and pulled from the other, two registers are used: the put and get pointers .

Queue growth from low to high memory is implelmented with
(An)+ to put data into the queue,
(An)+ to get data from the queue.

After a put operation, the put address register points to the next available space in the
queue and the unchanged get address register points to the next item to remove from the
queue. After a get operation , the get address register points to the next item to remove
from the queue and the unchanged put address register points to the next available
space in the queue. This is illustrated as:

Low Memory

Last Get (Free)

Get (An)+- Next Get

. . .
Last Put

Put (An)+- (Free)

High Memory

24

If the queue is to be implemented as a circular buffer, the address register should be
checked and, if necessary, adjusted before the put or get operation is performed. The ad
dress register is adjusted by subtracting the buffer length (in bytes).

Queue growth from high to low memory is implemented with
- (An) - to put data into the queue,
- (An) - to get data from the queue.

After a put operation, the put address register points to the last item put in the queue and
the unchanged get address register points to the last item removed from the queue. After
a get operation, the get address register points to the last item removed from the queue
and the unchanged put address register points to the last item put in the queue. This is il
lustrated as:

Low Memory

(Free)

Put -(An)- Last Put . . .
Next Get

Get (- An)____... Last Get (Free)

High Memory

If the queue is to be implemented as a circular buffer, the get or put operation should be
performed first, and then the address register should be checked and, if necessary, ad
justed. The address register is adjusted by adding the buffer length (in bytes).

25

SECTION 3
INSTRUCTION SET SUMMARY

3.1 INTRODUCTION

This section contains an overview of the form and structure of the M68000 architecture
instruction set. The instructions form a set of tools that include all the machine functions
to perform the following operations:

• Data Movement
• Integer Arithmetic
• Logical
• Shift and Rotate
• Bit Manipulation
• Binary Coded Decimal
• Program Control
• System Control

The complete range of instruction capabilities combined with the flexible addressing
modes described in Section 2 provide a very flexible base for program development.
Detailed information about each instruction is given in Appendix B. Instructions
available only on the MC68010 or which behave differently on the MC68010 are
highlighted.

3.2 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move
(MOVE) instruction. The move instruction and the effective addressing modes allow both
address and data manipulation. Data move instructions allow byte, word, and long word
operands to be transferred from memory to memory, memory to register, register to
memory, and register to register. Address move instructions allow word and long word
operand transfers and ensure that only legal address manipulations are executed. In ad
dition to the general move instruction, there are several special data movement instruc
tions: move multiple registers (MOVEM), move periphera1 data (MOVEP), exchange
registers (EXG), load effective address (LEA), push effective address (PEA), link stack
(LINK), unlink stack (UNLK), and move quick (MOVEQ). Table 3-1 is a summary of the data
movement operations.

3.3. INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB),
multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP), clear (CLR), and
negate (NEG). The add and subtract instructions are available for both address and data

27

I
I

operations, with data operations accepting all operand sizes. Address operations are
limited to legal address size operands (16 or 32 bits). Data, address, and memory com
pare operations are also available. The clear and negate instructions may be used on all
sizes of data operands.

Table 3-1. Data Movement Operations

Instruction Operand Size Operation

EXG 32 Rx - Ry

LEA 32 EA - An

IAnl - -ISP)
LINK - ISPl - An

ISP!+ displacement - SP
MOVE 8, 16, 32 IEAls - EAd

MOVEC 32
IRnl - Cr
ICrl - Rn

MOVEM 16, 32
(EAi - An, Dn
IAn, Dnl - EA

MOVES 8, 16, 32
IEAl - Rn
IRnl - EA

Instruction Operand Size bperation

MOVEP 16, 32

MOVEO 8

PEA 32

SWAP 32

UN LK -

NOTES•
s= source
d =destination
[J = bit numbers
Cr= Control Register

dlAnl - Dn
Dn - dlAnl

#xxx -Dn

EA - -ISP)

Dn[31 •16J - Dn[15•0]

IAnl - Sp
ISP)+ - An

- I) =indirect with predecrement
() + = indirect with postdecrement
= immediate data

The multiply and divide operations are available for signed and unsigned operands using
word multipy to produce a long product and a long word dividend with word divisor to pro
duce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended
instructions. These instructions are: add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition codes as a result of a compare
of the operand with zero is also available. Test and set (TAS) is a synchronization instruc
tion useful in multiprocessor systems. Table 3-2 is a summary of the integer arithmetic
operations.

3.4 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of in
teger data operands. A similar set of immediate instructions (ANDI, ORI , and EORI) pro
vide these logical operations with all sizes of immediate data. Table 3-3 is a summary of
the logical operations.

3.5 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR and
ASL and logical shift instructions LSR and LSL. The rotate instructions (with and without
extend) available are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be
performed in either registers or memory. Register shifts and rotates support all operand
sizes and allow a shift count specified in the instruction of one or eight bits, or 0 to 63
bits specified in a data register.

28

Memory shifts and rotates are for word operands only and allow single-bit shifts or
rotates.

Table 3-4 is a summary of the shift and rotate operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Size

8, 16, 32

ADD

16, 32

ADDX
8, 16, 32

16, 32

CLA 8, 16, 32

8, 16, 32

CMP

16, 32

DIVS 32 + 16

DIVU 32+ 16

EXT
8-16
16- 32

MULS 16x 16 - 32

MULU 16x 16 - 32

NEG 8, 16, 32

NEGX 8, 16, 32

8, 16, 32

SUB

16, 32

SUBX 8, 16, 32

TAS 8

TST 8, 16, 32

NOTES:
[] = bit number
- I I = indirect wi th predecrement
I I+ =indirect with postdecrement
#= immediate data

Operation

Dn+(EAl -Dn
IEAl+ Dn- (EAI

!EAl+ #xxx - !EAI
An + (EAi - An

Dx+ Dy + X- Dx
- (Axl + -(Ayl + X - (Ax)

O-EA

Dn- IEAI
IEAI - #xxx

IAxl + - IAyl +
An - (EAI

Dn + (EAl - Dn

Dn + IEAl - Dn

1Dnl9- Dn15
1Dnl15- Dn32
Dnx IEAl - Dn

Dn x IEAl - Dn

0 - IEAl- IEAI

0 - IEAl - X - IEAI

Dn-IEAl-Dn
IEAl -Dn- IEAI

IEAl- #xxx - (EAI
An-IEAl-An

Dx -Dy - X - Dx
- IAxl- -IAyl-X - IAxl

[EA] - 0, 1 - EA[7]

IEAl - 0

Table 3-3. Logical Operations

Instruction Operand Size Operation

AND

OR

EOR

NOT

NOTES:
- =invert
#= immed iate da ta
A = logica l AND

DnAIEAl - Dn
8, 16, 32 IEAIADn - IEAI

IEAIA#xxx - IEAI

Dn v IEAI - Dn
8, 16, 32 IEAI v Dn - IEAI

IEAI v #xxx - IEAI

8, 16, 32
IEAI Gl Dy - I EA)

IEAI Gl #xxx - IEAI

8, 16, 32 -IEAI IEAI

V = logical OR
Gl = logical exclusive OR

29

Table 3·4. Shift and Rotate Operations

lnstrue- Operand Opera tion
ti on Size

ASL 8. 16, 32 ~o

ASR 8. 16, 32 ~
LSL 8. 16. 32 ~ ... I f.- o

LSR 8. 16, 32 o~

ROL 8. 16, 32 ~~ ~
ROR 8. 16, 32 -ROXL 8. 16, 32 ITH ~

RO XR 8. 16, 32 ~ KTI

3.6 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test
(BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG).
Table 3·5 is a summary of the bit manipulation operations.

Table 3·5. Bit Manipulation Operations

Instruction Operand Size Operaiion

BTST 8, 32 -bit of IEAl - Z

BSET 8, 32
-bit of IEAl - Z

1- bit of EA

BCLR 8, 32
- bi t of IEAl - Z

O- bit of EA

BCHG 8, 32
- bit of IEAl - Z

- bi t of IEAI - bit of EA

NOTE: - = invert

3.7 BINARY CODED DECIMAL OPERATIONS

Multiprecision ar ithmetic operations on binary coded decimal numbers are accomplish·
ed using the following instructions: add decimal with extend (ABCD), subtract decimal
with extend (SBCD), and negate decimal with extend (NBCD). Table 3-6 is a summary of
the binary coded decimal operations .

30

Table 3·6. Binary Coded Decimal Operations

Instruction
Operand

Operation
Size

ABCD 8 Dx 1o+Dy10+X - Dx
- IAxl10+ -IAyJ10+ X - IAxl

SBCD 8
Dx10- Dy10-X - Dx

-IAxl10 - -I AyJ10 -X - ll\xl

NBCD 8 O-IEAl10-X - IEAI

NOTE: - I I ; indi rect with predecrement

3.8 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditionai and uncondi
tional branch instructions and return instructions. These instructions are summarized in
Table 3-7.

The conditional instructions provide setting and branching for the following conditions:
CC - Carry Clear LS - Low or Same
CS - Carry Set LT - Less Than
EQ - Equal Ml - Minus
F - Never True NE - Not Equal
GE - Greater or Equal PL - Plus
GT - Greater Than T - Always True
HI - High VC - Overflow Clear
LE - Less or Equal VS - Overflow Set

Table 3·7. Program Control Operaiions

Instruction Operation
Conditional

Bee Branch Condit ionally 114 Conditions)
8- and 16-Bit Displacement

DB cc Test Condit ion, Decrement, and Branch
16-Bit Displacement

sec Set Byte Conditionally 116 Conditions)

Unconditional

BRA Branch Always
8- and 16-Bit Displacement

BSR Branch to Subroutine
8- and 16-Bit Displacement

JMP Jump

JSR Jump to Subroutine

Retu rns

RTD Return from Subroutine and
and Deallocate Stack I

RTR Return and Restore Condition Codes

RTS Return from Subroutine

31

3.9 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the status register. These in
structions are summarized in Table 3-8. In the MC68010, the MOVE from SR instruction
has been made privileged and the MOVE from CCR instruction has been added. See SEC·
TION 4 EXCEPTION PROCESSING.

Table. 3·8. System Control Operations

Instruction Operation

Privileged
ANDI to SR Logical AND to Status Register
EORI to SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register
MOVE SR to EA Store Status Register
MOVE USP Move User Stack Pointer

I MOVEC Move Control Register
MOVES Move Alternate Address Space
ORI to SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Excep tion
STOP Stop Program Execution

Trap Generating
CHK Check Data Register Against Upper Bounds
TRAP Trap
TRAPV Trap on Overflow

Condition Code Register
ANDI to CCR Logical AND to Condition Codes
EORI to CCR Logical EOR to Condition Codes
MOVE EA to CCR Load New Condition Codes I
MOVE CCR to EA Store Condition Codes
ORI to CCR Logical OR to Condition Codes

32

4.1 INTRODUCTION

SECTION 4
EXCEPTION PROCESSING

This section describes the actions of the M68000 which are outside the normal process

ing associated with the execution of instructions. The functions of the bits in the super

visor portion of the status register are covered: the supervisor/user bit, the trace enable

bit, and the processor priority mask. Finally, the sequence of memory references and ac

tions taken by the processor on exception conditions is detailed.

The processor is always in one of three processing states: normal, exception, or halted.

The normal processing state is that associated with instruction execution; the memory

references are to fetch instructions and operands, and to store results. A special case of

the normal state is the stopped state which the processor enters when a STOP instruc

tion is executed. In this state, no further memory references are made.

An additional special case of the normal state exists in the MC68010, the loop mode, I
which may be entered when a DBcc instruction is executed. In loop mode, only operand

fetches occur. See APPENDIX G MC68010 LOOP MODE OPERATION.

The exception processing state is associated with interrupts, trap instructions, tracing,

and other exceptional conditions. The exception may be internally generated by an in

struction or by an unusual condition arising during the execution of an instruction. Exter

nally, exception processing can be forced by an interrupt, by a bus error, or by a reset. Ex

ception processing is designed to provide an efficient context switch so that the pro

cessor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure . For exam

ple, if during the exception processing of a bus error another bus error occurs, the pro

cessor assumes that the system is unusable and halts. Only an external reset can restart

a halted processor. Note that a processor in the stopped state is not in the halted state,

nor vice versa.

4.2 PRIVILEGE STATES

The processor operates in one of two states of privilege: the user state or the supervisor

state. The privilege state determines which operations are legal, are used by the external

memory management device to control and translate accesses, and are used to choose

between the supervisor stack pointer and the user stack pointer in instruction

references.

33

I

The privilege state is a mechanism for providing security in a computer system.
Programs should access only their own code and data areas and ought to be restricted
from accessing information which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user
state. In this state, the accesses are controlled and the effects on other parts of the
system are limited. The operating system executes in the supervisor state, has access to
all resources, and performs the overhead tasks for the user state programs.

4.2.1 SUPERVISOR STATE. The supervisor state is the higher state of privilege. For in
struction execution, the supervisor state is determined by the S bit of the status register;
if the S bit is asserted (high), the processor is in the supervisor state. All instructions can
be executed in the supervisor state. The bus cycles generated by instructions executed
in the supervisor state are classified as supervisor references. While the processor is in
the supervisor privilege state, those instructions which use either the system stack
pointer implicitly or address register seven explictly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the state of the
S bit when the exception occurs. The bus cycles generated during exception processing
are classified as supervisor references. All stacking operations during exception pro
cessing use the supervisor stack pointer.

4.2.2 USER STATE. The user state is the lower state of privilege. For instruction execu
tion, the user state is determined by the S bit of the status register; if the S bit is negated
(low), the processor is executing instructions in the user state.

Most instructions execute ident ically in user state and in the supervisor state. However,
some instructions which have important system effects are made privileged. User pro
grams are not permitted to execute the STOP instruction or the RESET instruction. To en
sure that a user program cannot enter the supervisor state except in a controlled manner,
the instructions which modify the whole status register are privileged. To aid in debugg
ing programs which are to be used as operating systems, the move to user stack pointer
(MOVE to USP) and move from user stack pointer (MOVE from USP) instructions are also
priv ileged.

To implement virtual machine concepts in the MC68010, the move from status register
(MOVE from SR), move to/from control register (MOVEC), and move alternate address
space (MOVES) instructions are also privileged.

The bus cycles generated by an instruction executed in user state are classified as user
state references. This allows an external memory management device to translate the
address and the control access to protected portions of the address space. While the
processor is in the user privilege state, those instructions wh ich use either the system
stack pointer implicitly or address register seven explicitly access the user stack pointer.

34

4.2.3 PRIVILEGE STATE CHANGES. Once the processor is in the user state and ex
ecuting instruct ions, only exception processing can change the privilege state. During
exception processing , the current state of the S bit of the status register is saved and the
S bit is asserted, putting the processor in the supervisor state. Therefore, when instruc
tion execution resumes at the address specified to process the exception , the processor
is in the supervisor privilege state .

The transit ion from supervisor to user state can be accomplished by any of tour instruc
tions: return from exception (RTE), move to status register (MOVE word to SR), AND im
mediate to status register (ANDI to SR), and exclus ive OR immediate to status register
(EORI to SR). The RTE instruction fetches the new status register and program counter
from the supervisor stack, loads each into its respective register, and then begins the in
struction fetch at the new program counter address in the privilege state determined by
the S bit of the new contents of the status register. The MOVE, ANDI , and EORI to status
register instructions each fetch all operands in the supervisor state, perform the ap
propriate update to the status register, and then fetch the next instruction at the next se
quential program counter address in the privilege state determined by the new S bit.

4.2.4 REFERENCE CLASSIFICATION. When the processor makes a reference, it
classifies the kind of reference being made, using the encoding of the three function
code output lines. This allows external translation of addresses , control of access, and
differentiation of special processor states , such as interrupt acknowledge. Table 4-1 lists
the classification of references .

Table 4-1. Reference Classification

Function Code Output
Reference Class

FC2 FC1 FCO

0 0 0 I Unassigned I

0 0 1 User Data

0 1 0 User Program

0 1 1 I Unassigned)

1 0 0 I Unassigned I

1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 In terrupt Acknowledge

4.3 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing , a general description of
exception processing is in order. The processing of an exception occurs in four steps .
with variations tor different exception causes. During the first step, a temporary copy of
the status register is made and the status register is set for exception processing. In the
second step the exception vector is determined and the third step is the saving of the cur
rent processor context. In the fourth step a new context is obtained and the processor
switches to instruction processing .

4.3.1 EXCEPTION VECTORS. Exception vectors are memory locations from which the
processor fetches the address of a routine which will handle that exception. All excep
tion vectors are two words in length (Figure 4-1) except tor the reset vector, which is four
words. All exception vectors lie in the supervisor data space except tor the reset vector

35

I

which is in the supervisor program space. A vector number is an 8-bit number which,
when multiplied by four, gives the offset of an exception vector. Vector numbers are
generated internally or externally, depending on the cause of the exception. In the case
of interrupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit
vector number (Figure 4-2) to the processor on data bus lines DO through 07.

The processsor forms the vector offset by left-shifting the vector number two bit posi
tions and zero-filling the upper order bits to obtain a 32-bit long word vector offset. In the
case of the MC68000 and MC68008, this offset is used as the absolute address to obtain
the exception vector itself. This is shown in Figure 4-3.

In the case of the MC68010, the vector offset is added to the 32-bit vector base register
(VBR) to obtain the 32-bit absolute address of the exception vector. This is shown in
Figure 4-4. Since the VBR is set to zero upon reset, the MC68010 will function identically
to the MC68000 and MC68008 until the VBR is changed via the MOVEC instruction.

31

31

Word 0

Word 1

A31

Even Bytes IAO = 01 1 Odd Bytes IAO = 1 I

J
New Program ':Lunter IH>ghl

New Program { ounter llowl

Figure 4·1. Exception Vector Format

0 15 08 07 DO

Ignored I v 7 1 v6 I v5 I v4 I v3 I v2 I v 1 I vO I
Where

v7 is the MSB of the Vector Number
vO is the LSB of the Vector Number

Figure 4-2. Peripheral Vector Number Format

Al =0

A l = 1

AlO A9 AB A7 A6 A5 A4 A3 A2 Al AO

All Zeroes I v 7 1 v6 j v5 I v4 I v3 j v2 I v 1 I vO I 0 I 0 I
Figure 4-3. Address Translated from 8-Bit Vector Number (MC68000, MC68008)

0

Contents of Vector Base Register

10

All Zeroes v7 v6 v5 v4 v3 v2 vl vO 0 0

Figure 4-4. Exception Vector Address Calculation (MC68010)

36

Exception Vector
Address

The actual address output on the address bus is truncated to the number of address bits
available on the bus of the particular implementation of the M68000 architecture. In the
case of the MC68000 and the MC68010, this is 24 bits. In the case of the MC68008, the ad
dress is 20 bits in length. The memory map for exception vectors is given in Table 4-2.

Table 4-2. Exception Vector Assignment

Vector Address

Number(s) Dec Hex Space
Assignment

0 0 000 SP Reset: Initial ssPT
1 4 004 SP Reset: Initial PC2

2 8 008 SD Bus Error

3 12 ooc SD Address Error

4 16 010 SD Illegal Instruction

5 20 014 SD Zero Divide

6 24 018 SD CHK Instruction

7 28 01C SD TRAPV Instruction

8 32 020 SD Privilege Violation

9 36 024 SD Trace

10 40 028 SD Line 1010 Emulator

11 44 02C SD Line 1111 Emulator

121 48 030 SD !Unassigned, Reserved)

131 52 034 SD (Unassigned, Reserved)

14 56 038 SD Format Error5

15 60 03C SD Uninitialized Interrupt Vector

16-231
64 040 SD !Unassigned, Reserved)

95 05F -

24 96 060 SD Spurious lnterrupt3

25 100 064 SD Level 1 Interrupt Autovector

26 104 068 SD Level 2 Interrupt Autovector

27 108 06C SD Level 3 Interrupt Autovector

28 112 070 SD Level 4 Interrupt Autovector

29 116 074 SD Level 5 Interru pt Autovector

30 120 078 SD Level 6 Interrupt Autovector

31 124 07C SD Level 7 Interrupt Autovector

32-47
12B 080 SD TRAP Instruct ion Vectors4

191 OBF

48-631
192 oco SD !Unassigned, Reserved)

255 OFF -

64-255
256 100 SD User Interru pt Vec~ors

1023 3FF -
NOTES:

1 Vector numbers 12, 13, 16 through 23, and 48 through 63 are reserved for
future enhancements by Motorola. No user peripheral devices should be
assigned these numbers.

2. Reset vector IOI requires four words, unlike the other vectors which only re
quire two words, and is located in the supervisor program space.

3. The spurious in terru pt vector is taken when there is a bus error indica
tion during interrupt processing. Refer to Paragraph 4.4.2 .

4. TRAP #n uses vector number 32 + n.

5. MC68010 only . See Return from Exception Section.
This vector is unassigned, reserved on the MC68000, and MC68008.

I

As shown in Table 4-2, the memory layout is 512 words long (1024 bytes). It starts at ad
dress 0 (decimal) and proceeds through address 1023 (decimal). This provides 255 unique
vectors; some of these are reserved for TRAPS and other system functions. Of the 255,
there are 192 reserved for user interrupt vectors. However, there is no protection on the
first 64 entries, so user interrupt vectors may overlap at the discretion of the systems
designer.

37

4.3.2. KINDS OF EXCEPTONS. Exceptions can be generated by either internal or external
causes. The externally generated exceptions are the interrupts and the bus error and
reset requests. The interrupts are requests from peripheral devices for processor action
while the bus error and reset inputs are used for access control and processor restart.
The internally generated exceptions come from instructions, or from address errors, or
tracing. The trap (TRAP), trap on overflow (TRAPV), check register against bounds (CHK),
and divide (DIV) instructions all can generate exceptions as part of their instruction ex·
ecution. In addition, illegal instructions, word fetches from odd addresses, and privilege
violations cause exceptions. Tracing behaves like a very high priority, internally
generated interrupt after each instruction execution.

4.3.3. MULTIPLE EXCEPTIONS. These paragraphs describe the processing which occurs
when multiple exceptions arise simultaneously. Exceptions can be grouped according to
their occurrence and priority. The group O exceptions are reset, bus error, and address er·
ror. These exceptions cause the instruction currently being executed to be aborted and
the exception processing to commence within two clock cycles. The group 1 exceptions
are trace and interrupt, as well as the privilege violations and illegal instructions. These
exceptions allow the current instruction to execute to completion , but preempt the ex·
ecution of the next instruction by forcing exception processing to occur (privilege viola·
tions and illegal instructions are detected when they are the next instruction to be ex·
ecuted). The group 2 exceptions occur as part of the normal processing of instructions.
The TRAP, TRAPV, CH K, and zero divide exceptions are in this group. For these excep·
tions, the normal execution of an instruction may lead to exception processing .

Group 0 exceptions have highest priority, while group 2 exceptions have lowest priority.
Within group 0, reset has highest priority, followed by bus error and then address error.
Within group 1, trace has priority over external interrupts, which in turn takes priority over
illegal instruction and privilege violation . Since only one instruction can be executed at a
time , there is no priority relation within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if
the conditions for both arise simultaneously. Therefore, if a bus error occurs during a
TRAP instruction, the bus error takes precedence, and the TRAP instruction processing
is aborted. In another example, if an interrupt request occurs during the execution of an
instruction while the T bit is asserted, the trace exception has priority, and is processed
first. Before instruction execution resumes, however, the interrupt exception is also pro
cessed and instruction processing commences finally in the interrupt handler routine. A
summary of exception grouping and priority is given in Table 4-3.

Table 4·3. Exception Grouping and Priority

Group Exception Processing

0 Reset Exception processing begin s within two clock cycles
Address Error

Bus Error

1 Trace Except ion processing begins before the next instruction
Interrupt

Illegal
Pri vilege

2 TRAP, TRAPV, Exception processing is started by normal instruct ion execution
CHK

Zero Divide

38

4.3.4 EXCEPTION STACK FRAMES. Exception processing saves the most volatile portion
of the current processor context on the top of the supervisor stack. This context is
organized in a format called the exception stack frame. Although this information varies
with the particular processor and type of exception , it always includes the status register
and program counter of the processor when the exception occurred .

The amount and type of information saved on the stack is determined by the processor
type and type of exception. Exceptions are grouped by type according to priority of the
exception. The group 0 exceptions include address error, bus error, and reset. The group
2 and 3 exceptions include interrupts , traps, illegal instructions, and trace.

The MC68000 and MC68008 group 1 and 2 exception stack frame is shown in Figure 4-5.
Only the program counter and status register are saved. The program counter points to
the next instruction to be executed after exceptions processing.

The MC68010 exception stack frame is shown in Figure 4-6. The number of words actually
stacked depends on the exception type . Group 0 exceptions (except reset) stack 29
words and group 1 and 2 exceptions stack four words. In order to support generic excep
tion handlers, the processor also places the vector offset in the exception stack frame.
The format code field allows the RTE (return from exception) instruction to identify what
information is on the stack so that it may be properly restored. Table 4-4 lists the
MC68010 stack format codes . Although some formats are peculiar to a particular M68000
family processor, the format 0000 is always legal and indicates that just the first four
words of the frame are present.

15

SSP _____...

Even Byte Odd Byte

Status Reg ister

Program Counter High

Program Counter Low

0
0 Higher

Address

Figure 4-5. MC68000, MC68008 Group 1 and 2 Exception Stack Frame

15 0 Higher Addresses

SP ~ Stat us Register

Program Counter High

Program Coun ter Low

Format l Vector Offset

Other Information
Depending on Exception

Figure 4-6. MC68010 Stack Frame

39

I

I

I
Table 4-4. MC68010 Format Codes

Format Code Stacked Information

()()()() MC68010 Short Format (4 Wordsl

1000 MC68010 Long Format (29 Words)

All Others Unassigned. Reserved

4.3.5 EXCEPTION PROCESSING SEQUENCE. Exception processing occurs in four iden
tifiable steps . In the first step, an internal copy is made of the status register. After the
copy is made, the S bit is asserted, putting the processor into the supervisor privilege
state. Also, the T bit is negated, which will allow the exception handler to execute
unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask
is also updated.

In the second step, the vector number of the exception is determined. For interrupts, the
vector number is obtained by a processor fetch and classified as an interrupt
acknowledge. For all other exceptions, internal logic provides the vector number. This
vector number is then used to generate the address of the exception vector. Group 1 and
2 exceptions use a short format exception stack frame (format= 0000 on the MC68010).
Additional information defining the current context is stacked for the bus error and ad·
dress error exceptions.

The third step is to save the current processor status, except for the reset exception. The
current program counter value and the saved copy of the status register are stacked us
ing the supervisor stack pointer. The program counter value stacked usually points to the
next unexecuted instruction , however for bus error and address error, the value stacked
for the program counter is unpredictable and may be incremented from the address of
the instruction which caused the error. Additional information defining the current con·
text is stacked for the bus error and address error exceptions .

The last step is the same for all exceptions. The new program counter value is fetched
from the exception vector. The processor then resumes instruction execution. The in·
struction at the address given in the exception vector is fetched and normal instruction
decoding and execution is started .

4.4 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is
peculiar to it. The following paragraphs detail the source of exceptions, how each arises ,
and how each is processed.

4.4.1 RESET. The reset input provides the highest exception level. The processing of the
reset signal is designed for system initiation and recovery from catastrophic failure. Any
processing in progress at the time of the reset is aborted and cannot be recovered. The
processor is forced into the supervisor state and the trace state is forced off. The pro·
cessor interrupt priority mask is set at level seven. In the MC68010, the vector base
register (VBR) is forced to zero. The vector number is internally generated to reference
the reset exception vector at location 0 in the supervisor program space. Because no

40

assumptions can be made about the validity of register contents, in particular the super
visor stack pointer, neither the program counter nor the status register is saved. The ad
dress contained in the first two words of the reset exception vector is fetched as the in
itial supervisor stack pointer and the address in the last two words of the reset exception
vector is fetched as the initial program counter. Finally, instruction execution is started
at the address in the program counter. The power-up/restart code should be pointed to by
the initial program counter.

The RESET instruction does not cause loading of the reset vector, but does assert the
reset line to reset external devices. This allows the software to reset the system to a
known state and then continue processing with the next instruction.

4.4.2. INTERRUPTS. Seven levels of interrupt priorities are provided . In the MC68000 and
MC68010, all seven levels are available . The MC68008 supports three interrupt levels:
two, five, and seven, level seven being the highest priority. Devices may be chained exter
nally within interrupt priority levels , allowing an unlimited number of peripheral devices
to interrupt the processor. Interrupt priority levels are numbered from one to seven, level
seven being the highest priority. The status register contains a three-bit mask which in
dicates the current processor priority and interrupts are inhibited for all priority levels
less than or equal to the current processor priority.

An interrupt request is made to the processor by encoding the interrut request level on
the interrupt request lines; a zero indicates no interrupt request. Interrupt requests arriv
ing at the processor do not force immediate exception processing, but are made pen
ding. Pending interrupts are detected between instruction executions. If the priority of
the pending interrupt is lower than or equal to the current processsor priority, execution
continues with the next instruction and the interrupt exception processing is postponed .

If the priority of the pending interrupt is greater than the current processor priority, the
exception processing sequence is started. A copy of the status register is saved, the
privilege state is set to supervisor state, tracing is suppressed, and the processor priority
level is set to the level of the interrupt being acknowledged. The processor fetches the
vector number from the interrupting device, classifying the reference as an interrupt
acknowledge and displaying the level number of the interrupt being acknowledged on the
address bus. If external logic requests automatic vectoring, the processor internally
generates a vector number which is determined by the interrupt level number. If external
logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the
usual exception processing, saving the format/offset word (MC68010 only), program
counter , and status register on the supervisor stack. The offset value in the format/offset
word on the MC68010 is the externally supplied or internally generated vector number
multiplied by four. The format will be all zeroes . The saved value of the program counter
is the address of the instruction which would have been executed had the interrupt not
been present. The content of the interrupt vector whose vector number was previously
obtained is fetched and loaded into the program counter, and normal instruction execu
tion commences in the interrupt handling routine.

Priority level seven is a special case . Level seven interrupts cannot be inhibited by the in
terrupt priority mask, thus providing a "non-maskable interrupt" capability . An interrupt
is generated each time the interrupt request level changes from some lower level to level
seven. Note that a level seven interrupt may still be caused by the level comparison if the
request level is a seven and the processor priority is set to a lower level by an instruction.

41

I

4.4.3 UNINITIALIZED INTERRUPT. An interrupting device asserts VPA, SERR, or provides
and M68000 interrupt vector number and asserts DTACK during an interrupt
acknowledge cycle by the M68000. If the vector register has not been initialized, the
responding M68000 Family peripheral will provide vector number 15, the uninitialized in
terrupt vector. This provides a un iform way to recover from a programming error.

4.4.4 SPURIOUS INTERRUPT. If during the interrupt acknowledge cycle no device
responds by asserting DTACK or VPA, SERR should be asserted to terminate the vector
acquisition . The processor separates the processing of this error from bus error by form
ing a short format exception stack and fetching the spurious interrupt vector instead of
the bus error vector. The processor then proceeds with t he usual exception processing .

4.4.5. INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
either from processor recognition of abnormal conditions during instruction, execution,
or from use of instructions whose normal behavior is trapping.

Exception processing for traps is straightforward . The status register is copied, the
supervisor state is entered , and the trace state is turned off. The vector number is inter
nally generated; for the TRAP instruction, part of the vector number comes from the in
struction itself. The program counter and the copy of the status register are saved on the
supervisor stack. The saved va lue of the program counter is the address of the instruc
tion after the instruction which generated the trap. Finally, instruction execution com
mences at the address contained in the exception vector.

Some instructions are used specifically to generate traps. The TRAP instruction always
forces an exception and is useful for implementing system calls for user programs. The
TRAPV and CH K instructions force an exception if the user program detects a runtime er
ror, which may be an arithmetic overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DIVU) instructions will force an exception if
a division operation is attempted with a divisor of zero.

4.4.6 ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. Illegal instruction is the term us
ed to refer to any of the word bit patterns which are not the bit patterns of the first word
of a legal M68000 instruction. During instruction execution, if such an instruction is fet
ched , an illegal instruction exception occurs. Motorola reserves the right to define in
structions whose opcodes may be any of the illegal instructions. Three bit patterns will
always force an illegal instruction trap on all M68000 Family compatible
microprocessors. They are: $4AFA, $4AFS, and $4AFC. Two of the patterns, $4AFA and
$4AFS, are reserved for Motorola system products. The third pattern, $4AFC, is reserved
for customer use.

In addition to the previously defined illegal instruction opcodes , the MC68010 defines
eight breakpoint illegal instructions with the bit patterns $4848-$484F. These instructions
cause the processor to enter i llegal instruction exception processing as usual , but a
breakpoint bus cycle is executed before the stacking operations are performed in which
the function code lines (FC0-2) are high and the address lines are all low. The processor

42

does not accept or send any data during this cycle. Whether the breakpoint cycle is ter· 1
minated with a DTACK, BERR, or VPA signal, the processor will continue with the illegal
instruction processing. The purpose of this cycle is to provide a software breakpoint that
will signal external hardware when it is executed. See MC6801 O Advanced Information
data sheet.

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as
unimplemented instructions and separate exception vectors are given to these patterns
to permit efficient emulation. "Line F" opcodes beginning with bit patterns equaling 1111
are implemented in the MC68020 as co-processor instructions. This facility allows the
operating system to detect program errors or to emulate unimplemented instructions in
software.

Exception processing for illegal instructions is similar to that for traps. After the instruc·
tion is fetched and decoding is attempted, the processor determines that execution of an
illegal instruction is being attempted and starts exception processing. The exception
stack frame for group 2 is then pushed on the supervisor stack and the illegal instruction
vector is fetched.

4.4.7 PRIVILEGE VIOLATIONS. In order to provide system security, various instructions
are privileged. An attempt to execute one of the privileged instructions while in the user
state will cause an exception. The privileged instructions are:

AND Immediate to SR
EOR Immediate to SR
MOVE to SR
MOVE from SR*
MOVEC*
MOVES*

*MC68010 only

MOVE USP
OR Immediate to SR
RESET
RTE
STOP

Exception processing for privilege violations is nearly identical to that for illegal instruc·
tions. After the instruction is fetched and decoded, and the processor determines that a
privilege violation is being attempted, the processor starts exception processing. The
status register is copied, the supervisor state is entered, and the trace state is turned off.
The vector number is generated to reference the privilege violation vector, and the cur·
rent program counter and the copy of the status register are saved on the supervisor
stack and, if the processor is an MC68010, the format/offset word, is also saved. The sav· I
ed value of the program counter is the address of the first word of the instruction which
caused the privilege violation . Finally, instruction execution commences at the address
contained in the privilege violation exception vector.

4.4.8 TRACING. To aid in program development, the MC68000 includes a facility to allow
instruction by instruction tracing . In the trace state, after each instruction is executed,
an exception is forced, allowing a debugging program to monitor the execution of the
program under test.

43

The trace facility uses the T bit in the supervisor portion of the status register. If the T bit

is negated (off), tracing is disabled and instruction execution proceeds from instruction

to instruction as normal. If the T bit is asserted (on) at the beginning of the execution of

an instruction, a trace exception will be generated after the execution of that instruction

is completed. If the instruction is not executed, either because an interrupt is taken or
the instruction is illegal or privileged, the trace exception does not occur. The trace ex

ception also does not occur if the instruction is aborted by a reset, bus error, or address
error exception. If the instruction is indeed executed and an interrupt is pending on com
pletion, the trace exception is processed before the interrupt exception. If, during the ex
ecution of the instruction, an exception is forced by that instruction , the forced excep

tion is processeed before the trace exception .

As an extreme illustration of the above rules, consider the arrival of an interrupt during

the exception of a TRAP instruction while tracing is enabled. First the trap exception is

processed, then the trace exception, and finally the interrupt exception. Instruction ex
ecution resumes in the interrupt handler routine.

The exception processing for trace is quite simple. After the execution of the instruction

is completed and before the start of the next instruction, exception processing begins. A
copy is made of the status register. The transition to supervisor privilege state is made

and, as usual, the T bit of the status register is turned off , disabling further tracing. The

vector number is generated to reference the trace exception vector, and the current pro
gram counter, the copy of the status register and , on the MC68010, the format/offset
word are saved on the supervisor stack. The saved value of the program counter is the ad

dress of the next instruction. Instruction execution commences at the address contained
in the trace exception vector .

4.4.9 BUS-ERROR. Bus error exceptions occur when the external logic requests that a
bus error be processed by an exception. The current bus cycle which the processor is
making is then aborted. Whether the processor was doing instruction or exception pro

cessing, that processing is terminated and the processor immediately begins exception

processing.

The bus error facility is identical on the MC68000 and MC68008; however, the stack frame
produced on the MC68010 contains more information. This is to allow the instruction

continuation facility which can be used to implement virtual memory on the MC68010
processor. Bus error for the MC68000/MC68008 and for the MC68010 are described

separately below.

4.4.9.1 Bus Error (MC68000/MC68008). Exception processing for bus error follows the
usual sequence of steps. The status register is copied, the supervisor state is entered,
and the trace state is turned off. The vector number is generated to refer to the bus error
vector. Since the processor was not between instructions when the bus error exception
request was made, the context of the processor is more detailed . To save more of this
context, additional information is saved on the supervisor stack. The program counter
and the copy of the status register are of course saved. The value saved for the program
counter is advanced by some amount , two to ten bytes beyond the address of the first
word of the instruction which made the reference causing the bus error. If the bus error
occurred during the fetch of the next instruction, the saved program counter has a value
in the vicinity of the current instruction, even if the current instruction is a branch, a

44

jump, or a return instruction. Besides the usual information, the processor saves its inter
nal copy of the first word of the instruction being processed and the address which was
being accessed by the aborted bus cycle. Specific information about the access is also
saved: whether it was a read or write, whether the processor was processing an instruc
tion or not, and the classification displayed on the function code ouputs when the bus er
ror occurred. The processor is processing an instruction if it is in the normal state or pro
cessing a group 2 exception; the processor is not processing an instruction if it is pro
cessing a group 0 or a group 1 exception. Figure 4-7 illustrates how this information is
organized on the supervisor stack. If a bus error occurs during the last step of exception
processing , while either reading the exception vector or fetching the instruction , the
value of the program counter is the address of the exception vector. Although this infor
mation is not sufficient in general to effect full recovery from the bus error, it does allow
software diagnosis. Finally, the processor commences instruction processing at the ad
dress contained in the vector. It is the responsibility of the error handler routine to clean
up the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, address error, or
read , the processor is halted, and all processing ceases. This simplifies the detection of
a catastrophic system failure , since the processor removes itself from the system rather
than destroy all memory contents. Only the RESET pin can restart a halted processor

15 14 13 12 11 10 9 8 6 5 4 3 2 0

Lower Address }1wJ 1/ N J Function Code

High
t- - Access Address - - - - - ------- ------ -------

Low

Instruction Register

Status Register

High
t- - Program Counter - - - - -- -- - -- - - - ----- - --

Low

R/ W lread/ writel : wri te= 0, read= 1. l / N l instruction / notl : instruction= 0, not= 1

Figure 4-7. Supervisor Stack Order for Bus or Address Error Exception

4.4.9.2 Bus Error (MC68010). Exception processing for a bus error follows a slightly dif
ferent sequence than the sequence for group 1 and 2 exceptions. In addition to the four
steps executed during exception processing for all other exceptions, 22 words of addi
tional information are placed on the stack. This additional information describes the in
ternal state of the processor at the time of the bus error and is reloaded by the RTE in
struction to continue the instruction that caused the error. Figure 4-8 shows the order of
the stacked information.

45

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP - Status Register

Program Counter I High)

Program Counter I Low)

1 000 I Vector Offset

Special Status Word

Fault Address (High)

Fault Add ress I Low)

UNUSED, RESERVED

Data Ou tput Buffer

UNUSED, RESERVED

Data Input Buffer

UNUSED, RESERVED

Instruction Input Bu ffer

Internal Information, 16 Words

NOTE : The stack pointer is decremen ted by 29 words, although only
26 words of in format ion are actually written to memory. The three
add itional words are reserved for fu ture use by Motorola.

Figure 4-8. Exception Stack Order (Bus and Address Error)

The value of the saved program counter does not necessarily point to the instruction that
was executing when the bus error occurred , but may be advanced by up to five words.
This is due to the prefetch mechanism on the MC68010 that always fetches a new in

struction word as each previously fetched instruction word is used. However, enough in
formation is placed on the stack for the bus error exception handler routine to determine

why the bus fault occurred . This additional information includes the address that was be
ing accessed, the function codes for the access, whether it was a read or a write, and
what internal register was included in the transfer. The fault address can be used by an

operating system to determine what virtual memory location is needed so that the re
quested data can be brought into physical memory. The RTE instruction is then used to
reload the processor 's internal state at the time of the fault , the faulted bus cycle will

then be re-run and the suspended instruction completed. If the faulted bus cycle was a
read-modify-write , the entire cycle will be re-run whether the fault occurred during the

read or the write operation.

An alternate method of handling a bus error is to complete the faulted access in soft

ware. In order to use this method, use of the special word, the instruction input buffer,
the data input buffer, and the data output buffer image is required. The format of the

special status word is shown in Figure 4-9. If the bus cycle was a write, the data output
buffer image should be written to the fault address location using the funct ion code con
tained in the special status word . If the cycle was a read , the data at the fault address
location should be written to the images of the data input buffer, instruction input buffer,
or both according to the DF and IF bits .• In addition , for read-modify-write cycles, the
status register image must by properly set to reflect the read data if the fault occurred
during the read port ion of the cycle and the write operation (i.e., setting the most signifi
cant bit of the memory location) must also be performed. This is because the entire read
modify-write cycle is assumed to have been completed by software. Once the cycle has

*If the faulted access was a byte operati on, th e data should be moved from or to the least-s ignifi cant byte of the data

o ut put or input buffer images unless the HB bit is set. Thi s condi t ion will only occur if a MOVEP in st ruct ion caused the

fau lt during t ran sfer of bits 8-15 of a word or long word or bits 24·31 of a long word.

46

been completed by software, the RR bit in the special status word is set to indicate to the
processor that it should not re-run the cycle when the RTE instruction is executed. If the
re-run flag is set when an RTE instruction executes, the MC68010 still reads all of the in
formation from the stack.

15 14 13 12 11 10 9 8 7 - 3 2 0

I RR I * I IF I DF I RM I HB I BY I RW I * I FC2-F CO I
RR - - Re- run flag; 0= processor re-run ldefau ltl, 1 =software re-run.
IF - Instruction fetch to the Instruction Input Buffer.
DF - Data fetch to the Data Input Buffer.
RM - Read-Modify-Write cycle .
HB - High byte transfer f rom the Data Output Buffer or to the Data Input Buffer.
BY - Byte tra nsfer flag; HB selects the high or low byte of the transfer reg ister. If BY is cleac, the transfer is word .
RW - Read/ W ri te flag; 0= w rite, 1 =read.
FC - The funct ion code used duri ng the fau lted access.

- These bits are reserved for future use by Motorola and w ill be zero when written by the MC68010.

Figure 4-9. Special Status Word Format

4.4.10 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access a word or a long word operand or an instruction at an odd address. The effect is
much like an internally generated bus error, so that the bus cycle is abortedd, ant pro
cessor ceases whatever processing it is currently doing and begins exception process
ing. After exception processing commences, the sequence is the same as that for bus er
ror including the information that is stacked, except that the vector number refers to the
address error vector instead. Likewise, if an address error occurs during the exception
processing for a bus error, address error, or reset, the processor is halted.

On the MC68010, the address error except ion stacks the same information that is stack
ed by a bus error exception , therefore it is possible to use the RTE instruction to continue
execution of the suspended instruction. However, if the software re-run flag is not set,
the fault address will be used when the cycle is re-run and another address error excep
tion will occur. Therefore, the user must be certain that the proper corrections have been
made to the stack image and user registers before attempting to continue the instruc
tion . With proper software handling, the address error exception handler could emulate
word or long word accesses to odd addresses if desired .

4.5 RETURN FROM EXCEPTION (MC68010)

In addition to returning from any exception handler routine on the MC68010, the RTE in
struction is used to resume the execution of a suspended instruction by restoring all of
the temporary register and control information stored during a bus error and returning to
the normal processing state. For the RTE instruction to execute properly, the stack mu~t
contain valid and accessible data. The RTE instruction checks for data validity in two
ways; first, by checking the format/offset word for a valid stack format code, and second,
if the format code indicates the long stack format, the long stack data is checked for
validity as it is loaded into the processor. In addition, the data is checked for accessibili
ty when the processor starts reading the long data. Because of these checks, the RTE in
struction executes as follows:

47

1 . Determine the stack format. This step is the same for any stack format and consists
of reading the status register, program counter, and format/offset word. If the for
mat code indicates a short stack format, execution continues at the new program
counter address. If the format code is not one of the MC68010 defined stack format
codes, exception processing starts for a format error.

2. Determine data validity. For a long stack format, the MC68010 will begin to read the
remaining stack data, checking for validity of the data. The only word checked for
validity is the first of the 16 internal information words (SP+ 26) shown in Figure 4-8.
This word contains a processor version number in addition to proprietary internal in
formation that must match the version number of the MC68010 that is attempting to
read the data. This validity check is used to insure that in dual processor systems,
the data will be properly interpreted by the RTE instruction if the two processors are
of different versions. If the version number is incorrect for this processor, the RTE
instruction will be aborted and exception processing will begin for a format error ex
ception. Since the stack pointer is not updated until the RTE instruction has suc
cessfully read all of the stack data, a format error occurring at this point will not
stack new data over the previous bus error stack information.

3. Determine data accessibility. If the long stack data is valid, the MC68010 performs a
read from the last word (SP+ 56) of the long stack to determine data accessibility. If
this read is terminated normally, the processor assumes that the remaining words
on the stack frame are also accessible. If a bus error is signaled before or during
this read, a bus error exception is taken as usual. After this read, the processor
must be able to load the remaining data without receiving a bus error; therefore, if a
bus error occurs on any of the remaining stack reads, the MC68010 treats this as a
double bus fault and enters the halted state.

48

A.1 INTRODUCTION

APPENDIX A
CONDITION CODES COMPUTATION

This appendix provides a discussion of how the condition codes were developed, the
meanings of each bit, how they are computed, and how they are represented in the in
struction set details.

Two criteria were used in developing the condition codes:
• Consistency - across instruction, uses, and instances
• Meaningful Results - no change unless it provides useful information

The consistency across instructions means that instructions which are special cases of
more general instructions affect the condition codes in the same way. Consistency
across instances means that if an instruction ever affects a condition code, it will always
affect that condition code. Consistency across uses means that whether the condition
codes were set by a compare, test, or move instruction, the conditional instructions test
the same situation. The tests used for the conditional instructions and the code com
putations are given in paragraph A.5.

A.2 CONDITION CODE REGISTER

The condition code register portion of the status register contains five bits:
N - Negative
Z - Zero
V - Overflow
C - Carry
X - Extend

The first four bits are true condition code bits in that they reflect the condition of the
result of a processor operation. The X bit is an operand for multiprecision computations.
The carry bit (C) and the multiprecision operand extend bit (X) are separate in the
MC68000 to simplify the programming model.

A.3 CONDITION CODE REGISTER NOTATION

In the instruction set details given in Appendix B, the description of the effect on the con
dition codes is given in the following form:

49

Condition Codes:

where:

N (negative)
Z (zero)
V (overflow)

C (carry)

X (extend)

x N z v c

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result equals zero. Cleared otherwise.
Set if there was an arithmetic overflow. This implies that the result is
not representable in the operand size. Cleared otherwise.
Set if a carry is generated out of the most significant bit of the
operands tor an addition. Also set if a borrow is generated in a subtrac
tion. Cleared otherwise.
Transparent to data movement. When affected, it is set the same as
the C bit.

The notational convention that appears in the representation of the condition code
register is:

*

0
1
u

set according to the result of the operation
not affected by the operation
cleared
set
undefined after the operation

A.4 CONDITION CODE COMPUTATION

Most operations take a source operand and a destination operand, compute, and store
the result in the destination location. Unary operations take a destination operand, com
pute, and store the result in the destination location. Table A-1 details how each instruc
tion sets the condition codes.

50

Operations
ABCD

ADD, ADDI,
ADDO

ADDX

AND, ANDI,
EOR, EORI,

MOVEO, MOVE,
OR, ORI,

CLR, EXT,
NOT, TAS, TST

CHK

SUB, SUBI
SUBO

SUBX

CMP, CMPI,
CMPM

DIVS, DIVU

MULS, MULU

SBCD, NBCD

NEG

NEGX

BTST, BCHG,
BSET, BCLR

ASL

ASL lr=OI

LS L, ROXL

LSR lr = OI

ROXL lr = OI

ROL

ROL lr=OI

ASR, LSR ,
ROXR

ASR, LSR lr=OI

ROXR lr=OI

ROR
ROR l r-01

Table A·1. Condition Code Computations

x N . u . .
. .
- .

- * . * . *

- .
- .
- . . u

. * . *

- -

. *

- * . *
- *
- *
- *
- * . *

- *
- *
- *
- *

- Not affected
U Undefined

z
?

.
7

.

u
*

?

*

*
*
?

*
7

?

*

*
*
*
*
*
*
*

*
*
*
*

v c
u ?

7 ?

? ?

0 0

u u
? ?

7 ?

7 ?

? 0
0 0

u ?

? ?

? ?

- -

? ?

0 0

0 ?

0 0

0 ?

0 ?

0 0

0 ?

0 0

0 ?

0 ?
0 0

? Other - see Special Defin ition

·General Case:
X=C
N=Rm
Z= Rm• .. •RO

51

Special Definition

C =Decimal Carry
Z=Z•Rm• .. . •Rli

V= Sm•Dm•Rm+ Sm•Dm•Rm
C= Sm•Dm+ Rm•Dm+ Sm•Rm

V= Sm•Dm•Rm+ Sm•Dm•Rm
C= Sm•Dm+ Rm•Dm+ Sm•Rm
Z=Z•Rm• .. :BP

V= Sm•Dm•Rm+ Sm•Dm•Rm
C= Sm•Dm+ Rm•Dm+ Sm•Rm

V= Sm•Dm•Rm+ Sm•Dm•Rm
C= Sm•Dm+ Rm•Dm+ Sm.•Rm
Z= Z.Rm· Ro

V= Sm•Dm•Rm+ Sm•Dm•Rm
C= Sm•Dm+ Rm•Dm+ Sm•Rm

V = Division Overflow

C =Decimal Borrow
Z=Z.Rm• RO
V=Dm•Rm, C=Dm+Rm

V=Dm•Rm, C=Dm+Rm
Z= Z. Rm-. .. • RCJ
Z=Dn

V= Dm•IDm-1 + ... + Dm- rl
+Dm•IDm-1 + ... + Dm-rl

C=Dm-r+ 1

C= '2m- L±..1

C=X

C=Dm-r+ 1

C=Dr- 1

C=X

C=Qr_-_l

Sm Source Operand -
most significant bit

Dm Destination operand -
most significant bit

Rm Result operand -
most significant bit

n bit number
shift count

A.5 CONDITIONAL TESTS

Table A·2 lists the condition names, encodings, and tests for the conditional branch and
set instructions. The test associated with each condition is a logical formula based on
the current state of the condition codes. If this formula evaluates to 1, the condition suc
ceeds, or is true. If the formula evaluates to 0, the condition is unsuccessful, or false. For
example, the T condition always succeeds, while the EQ condition succeeds only if the Z
bit is currently set in the condition codes.

Table A·2. Condltlonal Tests

Mnemonic Condition Encoding Test

T true ()()()() 1
F false 0001 0
HI high 0010 C·Z

LS low or same 0011 C+Z

CC IHSI carry clea r 0100 c
CS ILOI carry set 0101 c

NE not equal 0110 z
EQ equal 0111 z
vc overflow clear 1000 v
vs overflow set 1001 v
PL plus 1010 N

Ml minus 1011 N

GE greater or equa l 1100 N•V+N•V

LT less than 1101 N•V+N•V
GT greater than 1110 N•V•Z+ N•V•Z

LE less or equal 1111 Z+N•V+N•V

52

B.1 INTRODUCTION

APPENDIX B
INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the MC68000 in
struction set. They are arranged in alphabetical order with the mnemonic heading set in
large bold type for easy reference.

B.2 ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways in which they may be used. The
following classifications will be used in the instruction definitions.

Data If an effective address mode may be used to refer to data operands, it is
considered a data addressing effect ive address mode.

Memory If an effective address mode may be used to refer to memory operands, it is
considered a memory addressing effective address mode.

Alterable If an effective address mode may be used to refer to alterable (writable)
operands, it is considered an alterable addressing effective address mode.

Control If an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode.

Table 8-1 shows the various categories to which each of the effective address modes
belong.

Table B-1. Effective Addressing Mode Categories

Addressing Mode Mode Register
Addressing Categories Assembler

Data Memory Control Alterable Syntax

Data Register Direct 000 reg. no. x - - x On

Address Register Direct 001 reg. no. - - - x An

Address Register Indirect 010 reg. no. x x x x IAnl

Address Register Indirect with 011 reg . no. x x - x I An I+

Postincrement
Address Register Indirect with 100 reg. no. x x - x - IAnl

Predecrement
Address Register Indirect wi th 101 reg. no x x x x di An)

Displacement

Address Register Indirect with 110 reg . no. x x x x dlAn, ix)

Index
Absolute Short 111 000 x x x x xxx.W

Absolute Long 111 001 x x x x xxx.L

Program Counter with 11 1 010 x x x - di PC I

Displacement
Program Counter with Index 111 011 x x x - dl PC, ixl'

Immediate 111 100 x x - - #xxx

53

These categories may be combined so that additional, more restrictive, classifications
may be defined. For example, the instruction descriptions use such classif ications as
alterable memory or data alterable. The former refers to those addressing modes which
are both alterable and memory addresses, and the latter refers to addressing modes
which are both data and alterable.

8.3 INSTRUCTION DESCRIPTION

The formats of each instruction are given in the following pages. Figure 8·1 illustrates
what information is given.

Instruction Name --------ABCD Add Decimal

Operation Description in RTL ___________ __ Operation: (Source)10 + (Destination)10 +)
{see paragraph 8.4)

Assembler ABCD Dy, Dx
Assembler Syntax for this Instruction

--------...-Syntax: ABCD -(Ay), -(Ax)

Text Description of Instruction Operation

Attributes: Size= (Byte)
Description: Add the source operand to the

bit, and sto're the result in the d
ed using binary coded decimal
in two different ways:

1. Data register to data re1
registers specified in th

2. Memory to memory: Th
ment addressing mode 1

st ruction.
This operation. is a byte opera!

Condition Codes Effects {see Appendix A)------+-Condltlon Codes: X N Z V C

l· lul · lul · I

Instruction Format - Specifies the bit pattern
and fields of the operation word and any other
words which are part of the instruction. The ef·
fective address extensions are not explicitly ii·
lustrated. The extensions {if there are any) would
follow the illustrated portions of the instruc·

N Undefined.
z
v
c
x

Cleared if the result is nrn
Undefined.
Set if a carry (decimal) wa
Set the same as the carry

~
Normally the Z conditio1

Ing before the start of a
cessful tests for zero

~ multiple-precision operati1
Instruction Format:

15 14 13 12 11 10 9 8

tions. For the MOVE instruction, the source ef· I I I I I I 1 1 0 0 RegRixster 1
fective address extension is the first, followed
by the destination effective address extension. Instruction Fields:

/

Register Rx field - Specifies
If R/M = o, specifies a dat<
If RIM = 1, specifies an ad<
ing mode.

. . R/M field - Specifies the ope1
Meanings and allowed values of the various 0 - The operation is data
fields required by the instruction format. 1 - The operation is men

Register Ry field - Specifies
If R/M = o, specifies a dat:

Figure 8·1. Instruction Description Format

54

If R/M = 1, specifies an ad<
inQ mode.

B.4 REGISTER TRANSFER LANGUAGE DEFINITIONS

The following register transfer language definitions are used for the operation descrip
tion in the details of the instruction set.

OPERANDS:
An - address register SSP - supervisor stack pointer
Dn - data register USP - user stack pointer
Rn - any data or address register SP - active stack pointer (equivalent to A7)
PC - program counter X - extend operand (from condition
SR - status register codes)
CCR - condition codes (low order byte of Z - zero condition code

status register) V - overflow condition code
Immediate Data - immediate data from the instruction
d - address displacement Destination - destination effective address
Source - source effective address Vector - location of exception vector

SUBFIELDS AND QUALIFIERS:
<bit>OF<operand> selects a single bit of the operand
<operand>[<bit number>:<bit number>] selects a subfield of an operand
(<operand>) the contents of the referenced location
<operand> 10 the operand is binary coded decimal; operations are to be performed

(<address register>)
- (<address register>)

(<address register>)+

in decimal.
the register indirect operator which indicates that the operand re
gister points to the memory location of the instruction operand. The
optional mode qualifiers are - , +, (d) and (d, ix); these are explained
in Section 2.

OPERATIONS: Operations are grouped into binary, unary, and other.

Binary - These operations are written <operand> <op> <operand> where <op> is one of the
following:

the left operand is moved to the location specified by the right operand
the contents of the two operands are exchanged

+ the operands are added
the right operand is subtracted from the left operand
the operands are multiplied
the first operand is divided by the second operand

A the operands are logically ANDed
v the operands are logically ORed
e the operands are logically exclusively ORed
< relational test, true if left operand is less than right operand
> relational test, true if left operand is not equal to right operand
shifted by the left operand is shifted or rotated by the number of positions specified by the
rotated by right operand

Unary:
- <operand>
<operand> sign-extended

<operand> tested

Other:

the operand is logically complemented
the operand is sign extended, all bits of the upper half are made
equal to high order bit of the lower half
the operand is compared to 0, the results are used to set the condi
tion codes

TRAP
STOP

equivalent to PC- (SSP)-; SR- (SSP)-; (vector)- PC
enter the stopped state, waiting for interrupts

If <condition> then <operations> else <operations> The condition is tested. If true, the
operations after the "then" are performed. If the condition is false and the optional "else"
clause is present, the operations after the "else" are performed. If the condition is false and
the optional "else" clause is absent, the instruction performs no operation.

55

ABCD Add Decimal with Extend ABCD
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source)10 + (Destination)10 + x-- Destination

ABCD Dy, Dx
ABCD - (Ay), - (Ax)

Size= (Byte)

Add the source operand to the destination operand along with the extend
bit, and store the result in the destination location. The addition is perform
ed using binary coded decimal arithmetic. The operands may be addressed
in two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecre
ment addressing mode using the address registers specified in the in
struction.

This operation is a byte operation only.

Condition Codes: X N Z V C

l•lul•lul•I
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a carry (decimal) was generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm

ing before the start of an operation. This allows suc
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i 1 i 1 I 0 I 0 I Re~:ter i 1 I 0 I 0 I 0 I 0 I ~ I Re~;ter I
Instruction Fields:

Register Rx field - Specifies the destination register:
If RIM= 0, specifies a data register.
If RIM= 1, specifies an address register for the predecrement address
ing mode.

RIM field - Specifies the operand addressing mode:
0 - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM= 0, specifies a data register.
If RIM= 1, specifies an address register for the predecrement address
ing mode.

56

ADD Add Binary ADD
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source)+ (Destination)- Destination

ADD <ea> , On
ADD On, <ea>

Size= (Byte, Word, Long)

Add the source operand to the destination operand, and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

Condition Codes: X N Z V C

I * I * I * I * I * I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation

000 001 010 (<Dn>)+(<ea>)-<Dn>
100 101 110 (<ea>)+(<Dn>)-<ea>

Effective Address field - Determines addressing mode:
a. If the location specified is a source operand, then all addressing

modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number

An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number dJPCl 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*Word and Long only.

- Continued -

57

ADD Add Binary ADD
Effective Address field (Continued)

b. If the location specified is a destination operand, then only alterable
memory addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An
(An)

(An)+
-(An)
d(An)

Notes:

- - d(An, Xi) 110 register number

- - Abs.W 111 000
010 register number Abs.L 111 001
011 register number dJ.PCl - -
100 register number d(PC, Xi) - -
101 register number Imm - -

1. If the destination is a data register, then it cannot be specified by using
the destination <ea> mode, but must use the destination Dn mode in
stead.

2. ADDA is used when the destination is an address register. ADDI and AD
DO are used when the source is immediate data. Most assemblers
automatically make this distinction.

58

ADDA Add Address ADDA
Operation: (Source)+ (Destination)- Destination

Assembler
Syntax: ADD <ea>, An

Attributes: Size= (Word, Long)

Description: Add the source operand to the destination address register, and store the
result in the address register. The size of the operation may be specified to
be word or long. The entire destination address register is used regardless
of the operation size.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight address registers. This is always

the destination.
Op-Mode field - Specifies the size of the operation:

011 - word operation. The source operand is sign-extended to a long
operand and the operation is performed on the address register using
all 32 bits.
111 - long operation.

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
:Un 000 register number d(An, Xi) 110 register number
An 001 re_g_ister number Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number dJPCI 111 010
-(An) 100 register number d(PC, Xi}_ 111 011
d(An) 101 register number Imm 111 100

59

ADDI Add Immediate ADDI
Operation: Immediate Data+ (Destination)- Destination

Assembler
Syntax: ADDI I< data>,< ea>

Attributes: Size= (Byte, Word, Long)

Description: Add the immediate data to the destination operand, and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The size of the immediate data matches the operation
size.

Condition Codes: X N Z V C
l•I •I •I •I •I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o o o Size Effective Address
Mode Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

1An1
(An)+
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 re_9_ister number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size= 00, then the data is the low order byte of the immediate word.
If size= 01, then the data is the entire immediate word.
If size= 10, then the data is the next two immediate words.

60

ADDQ Add Quick ADDQ
Operation: Immediate Data+ (Destination)- Destination

Assembler
Syntax: ADDO#< data>, <ea>

Attributes: Size= (Byte, Word, Long)

Description: Add the immediate data to the operand at the destination location. The
data range is from 1 to 8. The size of the operation may be specified to be
byte, word, or long. Word and long operations are also allowed on the ad
dress registers and the condition codes are not affected. The entire
destination address register is used regardless of the operation size.

Condition Codes: X N Z V C
l•l•l•l•l•I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

The condition codes are not affected if an addition to an address register is
made.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Data 0 Size Effective Address
Mode Register

Instruction Fields:
Data field - Three bits of immediate data, 0, 1-7 representing a range of 8,
1 to 7 respectively.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addressl'!.9_ Mode Mode R~ster Addressl'!.9._ Mode Mode R~ster
On 000 register number d(An, Xi) 110 register number

An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

~nI+ 011 register number d(PCl - -
-(An) 100 register number d(PC, Xi) - -
~nT 101 register number Imm - -

*Word and Long only.

61

ADDX Add Extended ADDX
Operation:

Assembler
Syntax:

Attributes:

Description:

{Source)+ {Destination)+ x-- Destination

ADDX Dy, Dx
ADDX - {Ay), - {Ax)

Size= {Byte, Word, Long)

Add the source operand to the destination operand along with the extend
bit and store the result in the destination location. The operands may be ad
dressed in two different ways:

1. Data register to data register: the operands are contained in data
registers specified in the instruction.

2. Memory to memory: the operands are addressed with the predecre
ment addressing mode using the address registers specified in the
instruction.

The size of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C

1*1*1*1*1*1
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm

ing before the start of an operation. This allows suc
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0

Instruction Fields:

Register 1
Rx

Size 0 0 R/ Register
M Ry

Register Rx field - Specifies the destination register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement address

ing mode.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

62

- Continued -

ADDX Add Extended ADDX
Instruction Fields: (Continued)

R/M field - Specifies the operand addressing mode:
O - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM= 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement ad
dressing mode.

63

AND AND Logical AND
Operation:

Assembler
Syntax:

Attributes:

Description:

{Source)A{Destination)- Destination

AND <ea>, Dn
AND Dn, <ea>

Size= {Byte, Word, Long)

AND the source operand to the destination operand and store the result in the destination location. The size of the operation may be specified to be byte, word, or long. The contents of an address register may not be used as an operand.

Condition Codes: X N Z V C
1-1·1·10101

N Set if the most significant bit of the result is set. Cleared otherwise. z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 {<Dn>)A{<ea>)-<Dn>
100 101 110 {<ea>)A{<Dn>)-<ea>

Effective Address field - Determines addressing mode:
If the location specified is a source operand then only data addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register Dn 000 register number d{An, Xi) 110 register number An - - Abs.W 111 000 {An) 010 register number Abs.L 111 001 {An)+ 011 register number d{PC) 111 010 -(An} 10:_[register number d{PC, Xi) 111 011 d(An) 101 register number Imm 111 100

- Continued -

64

AND AND Logical AND
Effective Address field (Continued)

If the location specified is a destination operand then only alterable memo
ry addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An

(An)
(An)+
-(An)
d(An)

Notes:

- - d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

1. If the destination is a data register, then it cannot be specified by us·
ing the destination <ea> mode, but must use the destination Dn
mode instead.

2. ANDI is used when the source is immediate data. Most assemblers
automatically make this distinction .

65

ANDI AND Immediate ANDI
Operation: Immediate Data A (Destination)- Destination

Assembler
Syntax: ANDI #<data>, <ea>

Attributes: Size= (Byte, Word, Long)

Description: AND the immediate data to the destination operand and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The size of the immediate data matches the operation
size.

Condition Codes: X N Z V C
1-1·1·10101

N Set if the most significant bit of the result is set. Cleared otherwise. z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o o o 0 Size Effective Address
Mode Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Re~ster On
An

(An)
(An)+
-(An)
d(An)

000 register number d(An, Xi) 110 register number - - Abs.W 111 000
010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size= 00, then the data is the low order byte of the immediate word.
If size= 01, then the data is the entire immediate word.
If size= 10, then the data is the next two immediate words.

66

ANDI
to CCR

AND Immediate to Condition Codes ANDI
to CCR

Operation: (Source)ACCR- CCR

Assembler
Syntax: ANDI #xxx, CCR

Attributes: Size= (Byte)

Description: AND the immediate operand with the condition codes and store the result
in the low-order byte of the status register.

Condition Codes: X N Z V C

I • I • I • I • I • I
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.
X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0
O 0 0 O O O O O Byte Data (8 bits)

67

ANDI
to SR

AND Immediate to the Status Register
(Privileged Instruction)

Operation: If supervisor state

Assembler

then (Source)ASR-- SR
else TRAP

Syntax: ANDI #xxx, SR

Attributes: Size= (Word)

ANDI
to SR

Description: AND the immediate operand with the contents of the status register and
store the result in the status register. All bits of the status register are af
fected.

Condition Codes: X N Z V C
I• I• l•l•l•I

N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.
X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101010101010111010111111111110101
. Word Data (16 bits) .

68

ASL,ASR Arithmetic Shift ASL, ASR
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination) Shifted by <count> -- Destination

ASd Dx, Dy
ASd #<data>, Dy
ASd <ea>

Size= (Byte, Word, Long)

Arithmetically shift the bits of the operand in the direction specified. The
carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two different ways:

1. Immediate: the shift count is specified in the instruction (shift range,
1·8).

2. Register: the shift count is contained in a data register specified in the
instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only and the operand size is
restricted to a word.

For ASL, the operand is shifted left; the number of positions shiftea is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit. The overflow bit in·
dicates if any sign changes occur during the shift.

Operand

ASL:

For ASR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; the sign bit is replicated into the high order bit.

Operand

ASR:

- Continued -

69

ASL, ASR Arithmetic Shift ASL, ASR
Condition Codes: X N Z V C

l*l*f*l*I*
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the most significant bit is changed at any time during the shift

operation. Cleared otherwise.
C Set according to the last bit shifted out of the operand. Cleared for a

shift count of zero.
X Set according to the last bit shifted out of the operand. Unaffected for

a shift count of zero.

Instruction Format (Register Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 O Co~ntl dr Size i/r 0 0 Register
Register

Instruction Fields (Register Shifts):
Count/Register field - Specifies shift count or register where count is
located:

If i/r = 0, the shift count is specified in this field. The values O, 1-7 re
present a range of 8, 1 to 7 respectively.
If i/r = 1, the shift count (modulo 64) is contained in the data register
specified in this field.

dr field - Specifies the direction of the shift:
o - shift right.
1 - shift left.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

i/r field -
If i/r = 0, specifies immediate shift count.
if i/r = 1, specifies register shift count.

Register field - Specifies a data register whose content is to be shifted.

Instruction Format (Memory Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 dr Effective Address
Mode Re ister

- Continued -

70

ASL,ASR Arithmetic Shift ASL, ASR
Instruction Fields (Memory Shifts):

dr field - Specifies the direction of the shift:
0 - shift right .
1 - shift left.

Effective Address field - Specifies the operand to be shifted . Only memory
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On - - d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 reg ister number Imm - -

71

Bee Branch Conditionally Bee
Operation: It (condition true) then PC+ d-- PC

Assembler
Syntax: Bee <label>

Attributes: Size= (Byte, Word)

Description: It the specified condition is met, program execution continues at location
(PC)+ displacement. Displacement is a twos complement integer which
counts the relative distance in bytes. The value in PC is the current instruc
tion location plus two. it the 8-bit displacement in the instruction word is
zero, then the 16-bit displacement (word immediately following the instruc
tion) is used. "cc" may specify the following conditions:

cc carry clear 0100 c LS low or same 0011 c+z
cs carry set 0101 c LT less than 1101 N•V + N·V
EQ equal 0111 z Ml minus 1011 N
GE greater or equal 1100 N•V + N·V NE not equal 0110 z
GT greater than 1110 N·V·Z+ N·V·Z PL plus 1010 N
HI high 0010 c.z vc overflow clear 1000 v
LE less or equal 1111 Z+N•V+N•V vs overflow set 1001 v

Condition Codes: Not affected .

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O 1 1 O Condition 8-bit Displacement
16-bit Displacement it 8-bit Displacement= 0

Instruction Fields:
Condition field - One of fourteen conditions discussed in description.
8-bit Displacement field - Twos complement integer specifying the

relative distance (in bytes) between the branch instruction and the
next instruction to be executed it the condition is met.

16-bit Displacement field - Allows a larger displacement than 8 bits. Used
only it the 8-bit displacement is equal to zero.

Note: A short branch to the immediately following instruction cannot be done
because it would result in a zero offset which forces a word branch instruc
tion definition.

72

BCHG Test a Bit and Change BCHG
Operation:

Assembler
Syntax:

Attributes:

Description:

-(<bit number>) OF Destination-Z;
-(<bit number>) OF Destination - <bit number> OF Destination

BCHG Dn, <ea>
BCHG #<data>, <ea>

Size ={Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. After the test, the state of the specified
bit is changed in the destination. If a data register is the destination, then
the bit numbering is modulo 32 allowing bit manipulation on all bits in a
data register. If a memory location is the destination, a byte is read from
that location, the bit operation performed using the bit number modulo 8,
and the byte written back to the location with zero referring to the least
significant bit. The bit number for this operation may be specified in two
different ways:

1. Immediate - the bit number is specified in a second word of the in
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C

1-1-1*1-l-I
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Register 1 0 Effective Address
Mode Register

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit

number.
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 register number dIAn, XIT 110 r~ster number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only. - Continued -

73

BCHG Test a Bit and Change BCHG
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1 0 0 0 0 J 1 J Effective Address
Mode l Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 re_g_ister number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -

a(An) 101 register number Imm - -

*Long only; all others are byte only.

bit number field - Specifies the bit numbers.

74

BCLR Test a Bit and Clear BCLR
Operation:

Assembler
Syntax:

Attributes:

Description:

-(<bit number>) OF Destination)--Z;
o-- <bit number> OF Destination

BLCR Dn, <ea>
BCLR #<data>, <ea>

Size= (Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. After the test, the specified bit is
cleared in the destination. If a data register is the destination, then the bit
numbering is modulo 32 allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that
location, the bit operation performed using the bit number modulo 8, and
the byte written back to the location with zero referring to the least
significant bit. The bit number for this operation may be specified in two
different ways:

1. Immediate - the bit number is specified in a second word of the in
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C

1-1-1 *1-1-1
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):
15 14 13 12 11 10 9 8

0 0 0 0 Register 1

Instruction Fields (Bit Number Dynamic):

7 6 5 4 3 2 1 0

0 Effective Address
Mode Register

Register field - Specifies the data register whose content is the bit
number.

Effective Address field - Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only.
- Continued -

75

BCLR Test a Bit and Clear BCLR
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 11 0 l Effective Address
Mode l Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 register only c!lAn, X!l_ 110 re_gJster number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only.

bit number field - Specifies the bit number.

76

BRA Branch Always BRA
Operation: PC+ d-- PC

Assembler
Syntax: BRA < label>

Attributes: Size= (Byte, Word)

Description: Program execution continues at location (PC)+ displacement. Displace
mer1t is a twos complement integer which counts the relative distance in
bytes. The value in PC is the current instruction location plus two. If the
8-bit displacement in the instruction word is zero, then the 16-bit displace
ment (word immediately following the instruction) is used.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 8-bit Displacement
16-bit Displacement if 8-bit Displacement = 0

Instruction Fields:
8-bit Displacement field - Twos complement integer specifying the rela

tive distance (in bytes) between the branch instruction and the next
instruction to be executed if the condition is met.

16-bit Displacement field - Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short branch to the immediately following instruction cannot be done
because it would result in a zero offset which forces a word branch instruc
tion definition.

77

BSET Test a Bit and Set BSET
Operation:

Assembler
Syntax:

Attributes:

Description:

-(<bit number>) OF Destination-z
1- <bit number> OF Destination

BSET Dn, <ea>
BSET #<data>, <ea>

Size= (Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. After the test, the specified bit is set in
the destination. If a data register is the destination, then the bit numbering
is modulo 32, allowing bit manipulation on all bits in a data register. If a
memory location is the destination, a byte is read from that location, the bit
operation performed using the bit number modulo 8, and the byte written
back to the location with zero referring to the least-significant bit. The bit
number for this operation may be specified in two different ways:

1. Immediate - the bit number is specified in a second word of the in
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C

1-1-1•1-l-I
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 O O Register 1 Effective Address
Mode Register

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit

number.
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

IAnI 010 r~ister number Abs.L 111 001
(An)+ 011 register number q{_F>Cl - -
-(An) 100 register number d(PC, X!.)_ - -
d(An) 101 register number Imm - -

*Long only; all others are byte only

- Continued -

78

BSET Test a Bit and Set BSET
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1 0 0 0 1 J 1 I Effective Address
Mode l Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode R~ster

Dn* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only.

bit number field - Specifies the bit number.

79

BSR Branch to Subroutine BSR
Operation: PC- - (SP); PC+ d -- PC

Assembler
Syntax: BSR < label>

Attributes: Size= (Byte, Word)

Description: The long word address of the instruction immediately following the BSR in
struction is pushed onto the system stack. Program execution then con
tinues at location (PC)+ displacement. Displacement is a twos comple
ment integer which counts the relative distances in bytes. The value in PC
is the current instruction location plus two. If the 8-bit displacement in the
instruction word is zero, then the 16-bit displacement (word immediately
following the instruction) is used.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 8-bit Displacement
16-bit Displacement if 8-bit Displacement= O

Instruction Fields:
8-bit Displacement field - Twos complement integer specifying the rela

tive distance (in bytes) between the branch instruction and the next in
struction to be executed if the condition is met.

16-bit Displacement field - Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short subroutine branch to the immediately following instruction cannot
be done because it would result in a zero offset which forces a word branch
instruction definition.

80

BTST Test a Bit BTST
Operation:

Assembler
Syntax:

Attributes:

Description:

-(<bit number>) OF Oestination-Z

BTST On, <ea>
BTST #<data>, <ea>

Size =(Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. If a data register is the destination,
then the bit numbering is modulo 32, allowing bit manipulation on all bits in
a data register. If a memory location is the destination, a byte is read from
that location, and the bit operation performed using the bit number modulo
8 with zero referring to the least-signifcant bit. The bit number for this
operation may be specified in two different ways:

1. Immediate - the bit number is specified in a second word of the in
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C
1-1-1 *1-1-1

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Effective Address
0 O O 0 Register 1 Mode Register

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit num

ber.
Effective Address field - Specifies the destination location. Only data

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*Long only; all others are byte only.

- Continued -

81

BTST Test a Bit BTST
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1 0 0 0 0101 Effective Address
Mode J Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only oata

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 register number d(An, Xi) 110 register number

:Ni - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011

~ d(An) 101 register number Imm - -
*Long only; all others are byte only.

bit number field - Specifies the bit number.

82

CHK Check Register Against Bounds CHK
Operation: If Dn < 0 or Dn > (<ea>) then TRAP

Assembler
Syntax: CHK <ea>, Dn

Attributes: Size = (Word)

Description: The content of the low order word in the data register specified in the in
struction is examined and compared to the upper bound. The upper bound
is a twos complement integer. If the register value is less than zero or
greater than the upper bound contained in the operand word, then the pro
cessor initiates exception processing. The vector number is generated to
reference the CHK instruction exception vector.

Condition Codes: X N Z V C
1-l•lululul

N Set if Dn<O; cleared if Dn> (<ea>). Undefined otherwise.
Z Undefined.
V Undefined.
C Undefined.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 Register 0 Effective Address
Mode Register

Instruction Fields:
Register field - Specifies the data register whose content is checked.
Effective Address field - Specifies the upper bound operand word. Only

data addressing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode Rt!S_lster

Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(A~ 010 r~ister number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

83

CLR Clear an Operand CLR
Operation: o- Destination

Assembler
Syntax: CLR <ea>

Attributes: Size= (Byte, Word, Long)

Description: The destination is cleared to all zero bits. The size of the operation may be
specified to be byte, word, or long.

Condition Codes: X N Z V C
1-101110101

N Always cleared.
Z Always set.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 Size Effective Address
Mode Register

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 re_g_ister number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number cfil>C, ,Xi) - -
d(An) 101 register number Imm - -

Note: A memory destination is read before it is written to.

84

CMP Compare CMP
Operation: (Destination) - (Source)

Assembler
Syntax: CM P <ea>, Dn

Attributes: Size =(Byte, Word, Long)

Description: Subtract the source operand from the destination operand and set the con
dition codes according to the result; the destination location is not chang
ed. The size of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C

1-1 • I * I* I * I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o 1 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies the destination data register.
Op-Mode field -

Byte Word Long
000 001 010

Operation
(< Dn>)-(<ea>)

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Rt!D_lster
_Qn ~ register number d(An, Xi) 110 r~ister number
An* 001 rtmister number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*Word and Long only.

Note: CMPA is used when the destination is an address register. CMPI is used
when the source is immediate data. CMPM is used for memory to memory
compares. Most assemblers automatically make this distinction.

85

Compare Address CMPA
Operation: (Destination)- (Source)

Assembler
Syntax: CMPA <ea>, An

Attributes: Size =(Word, Long)

Description: Subtract the source operand from the destination address register and set
the condition codes according to the result; the address register is not
changed. The size of the operation may be specified to be word or long.
Word length source operands are sign extended to 32 bit quantities before
the operation is done.

X N Z V C

1-l*i*l*I*\
Condition Code:

N
z
v
c
x

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1
Effective Address

Register Op-Mode Mode Register

Instruction Fields:
Register field - Specifies the destination address register.
Op-Mode field - Specifies the size of the operation:

011 - word operation. The source operand is sign-extended to a long
operand and the operation is performed on the address register using
all 32 bits.
111 - long operation.

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Lrn O()(J register number d(An, Xi) 110 register nµmber
An 001 register number Abs.W 111 000
(An) 010 re_gjster number Abs.L 111 001

(An)+ 011 register number q(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

86

CMPI Compare Immediate CMPI
Operation: (Destination) - Immediate Data

Assembler
Syntax: CMPI #<data>, <ea>

Attributes: Size =(Byte, Word, Long)

Description: Subtract the immediate data from the destination operand and set the con
dition codes according to the result; the destination location is not chang
ed. The size of the operation may be specified to be byte, word, or long. The
size of the immediate data matches the operation size.

Condition Codes: X N · Z V C
1-1 * I * I * I * I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o o o Size Effective Address
Mode Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn

_An
(An)

(An)+
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size= 00, then the data is the low order byte of the immediate word.
If size= 01, then the data is the entire immediate word.
If size= 10, then the data is the next two immediate words.

87

CMPM Compare Memory CMPM
Operation: (Destination)- (Source)

Assembler
Syntax: CMPM (Ay) +, (Ax)+

Attributes: Size= (Byte, Word, Long)

Description: Subtract the source operand from the destination operand, and set the con
dition codes according to the results; the destination location is not chang
ed. The operands are always addressed with the postincrement addressing
mode using the address registers specified in the instruction. The size of
the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C
I- I * I * I * I * I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 I o 11 11 I Re~:ter 11 I Size I o I o 11 I Re~;ter I

Instruction Fields:
Register Rx field - (always the destination) Specifies an address register

for the postincrement addressing mode.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Register Ry field - (always the source) Specifies an address register for
the postincrement addressing mode.

88

DBcc Test Condition, Decrement, and Branch DBcc
Operation: If (condition false)

Assembler

then Dn-1-Dn;
If Dn:# -1

then PC+ d- PC
else PC+ 2- PC (Fall through to next instruction)

Syntax: DBcc Dn, < label>

Attributes: Size =(Word)

Description: This instruction is a looping primitive of three parameters: a condition, a
data register, and a displacement. The instruction first tests the condition
to determine if the termination condition for the loop has been met, and if
so, no operation is performed. If the termination condition is not true, the
low order 16 bits of the counter data register are decremented by one. If the
result is - 1, the counter is exhausted and execution continues with the
next instruction. If the result is not equal to -1, execution continues at the
location indicated by the current value of PC plus the sign-extended 16-bit
displacement. The value in PC is the current instruction location plus two
"cc" may specify the following conditions:

cc carry clear 0100 c LS low or same 0011 C+Z
cs carry set 0101 c LT less than 1101 N•V + N•V
EQ equal 0111 z Ml minus 1011 N
F false 0001 0 NE not equal 0110 z
GE greater or equal 1100 N·V + N·V PL plus 1010 N
GT greater than 1110 N·V·Z+ N·V·Z T true 0000 1
HI high 0010 C·Z vc overflow clear 1000 v
LE less or equal 1111 Z+N•V+N•V vs overflow set 1001 v

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 Condition 1 1 0 0 1 Register

Displacement

Instruction Fields:

Notes:

Condition field - One of the sixteen conditions discussed in description.
Register field - Specifies the data register which is the counter.
Displacement field - Specifies the distance of the branch (in bytes).

1. The terminating condition is like that defined by the UNTIL loop con
structs of high-level languages. For example: DBMI can be stated as
"decrement and branch until minus."

- Continued -

89

DBcc Test Condition, Decrement and Branch DBcc
Notes: (Continued)

2. Most assemblers accept DBRA for DBF for use when no condition is
required for termination of a loop.

3. There are two basic ways of entering a loop; at the beginning or by
branching to the trailing DBcc instruction. If a loop structure ter
minated with DBcc is entered at the beginning, the control index count
must be one less than the number of loop executions desired. This
count is useful for indexed addressing modes and dynamically
specified bit operations. However, when entering a loop by branching
directly to the trailing DBcc instruction, the control index should equal
the loop execution count. In this case, if a zero count occurs, the DBcc
instruction will not branch causing complete bypass of the main loop.

90

DIVS Signed Divide DIVS
Operation: (Destination)/(Source)- Destination

Assembler
Syntax: DIVS <ea>, Dn

Attributes: Size = (Word)

Description: Divide the destination operand by the source operand and store the result
in the destination. The destination operand is a long operand (32 bits) and
the source operand is a word operand (16 bits). The operation is performed
using signed arithmetic. The result is a 32-bit result such that:

1. The quotient is in the lower word (least significant 16-bits).
2. The remainder is in the upper word (most significant 16-bits).

The sign of the remainder is always the same as the dividend unless the re
mainder is equal to zero. Two special conditions may arise:

1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc

tion. If overflow is detected, the condition is flagged but the operands
are unaffected.

Condition Codes: X N Z V C
1-l•l•l•lol

N Set if the quotient is negative. Cleared otherwise. Undefined if over-
flow.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow.
V Set if division overflow is detected. Cleared otherwise.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 76543210

1 0 O 0 Register 1 1 Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight data registers. This field always

specifies the destination operand.
Effective Address field - Specifies the source operand. Only data ad

dressing modes are allowed as shown:
Addressing Mode Mode Re_.9.lster Addressi'!D_ Mode Mode R~ster

Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

Note: Overflow occurs if the quotient is larger than a 16-bit signed integer.

91

DIVU Unsigned Divide DIVU
Operation: (Destination)/(Source)- Destination

Assembler
Syntax: DIVU <ea>, On

Attributes: Size =(Word)

Description: Divide the destination operand by the source operand and store the result
in the destination. The destination operand is a long operand (32 bits) and
the source operand is a word (16 bit) operand. The operation is performed
using unsigned arithmetic. The result is a 32-bit result such that:

1. The quotient is in the lower word (least significnat 16 bits).
2. The remainder is in the upper word (most significant 16 bits).

Two special conditions may arise:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc

tion. If overflow is detected, the conditionJs flagged but the operands
are unaffected.

Condition Codes: X N Z V C
1-1 * I * I * I o I

N Set if the most significant bit of the quotient is set. Cleared other-
wise. Undefined if overflow.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow.
V Set if division overflow is detected. Cleared otherwise.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 Register 0 1 Effective Address
Mode Register

Instruction Fields:
Register field - specifies any of the eight data registers. This field always

specifies the destination operand.
Effective Address field - Specifies the source operand. Only data addres

sing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode Register

On uuu register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-~nl 1UU register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

Note: Overflow occurs if the quotient is larger than a 16-bit unsigned integer.

92

EOR Exclusive OR Logical EOR
Operation: (Source) Ell (Destination)-- Destination

Assembler
Syntax: EOR Dn, <ea>

Attributes: Size= (Byte, Word, Long)

Description: Exclusive OR the source operand to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. This operation is restricted to data
registers as the source operand. The destination operand is specified in the
effective address field.

Condition Codes: X N Z V C
1-1 * I* Io I o I

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
100 101 110 (<ea>)ED(<Dx>)--<ea>

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 r~1ster num_Q_er d(An, X!l 110 register num_Q_er
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) - -
-(An) 100 register number d(Pc.;, Xi)_ - -
d~nI TOl register number Imm - -

Note: Memory to data register operations are not allowed. EORI is used when the
source is immediate data. Most assemblers automatically make this
distinction.

93

EORI Exclusive OR Immediate EORI
Operation: Immediate Data Ell (Destination)- Destination

Assembler
Syntax: EORI #<data>, <ea>

Attributes: Size =(Byte, Word, Long)

Description: Exclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The immediate data matches the opera
tion size.

Condition Codes: X N Z V C
1-1 * I* Io Io I

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o 1 o o Size Effective Address
Mode Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation .
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown :

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An

(An)
(An)+
-(An)
d(An)

000 register number d"{!n ,:Ki) 110 register numoer
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size= 00, then the data is the low order byte of the immediate word.
If size= 01, then the data is the entire immediate word.
If size= 10, then the data is the next two immediate words.

94

EORI
to CCR

Exclusive OR Immediate to Condition Codes EORI
to CCR

Operation: (Source) e CCR-- CCR

Assembler
Syntax: EORI #xxx, CCR

Attributes: Size= (Byte)

Description: Exclusive OR the immediate operand with the condition codes and store
the result in the low-order byte of the status register.

Condition Codes: X N Z V C

I* I* I* I* l*I
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X Changed if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0
0 0 0 0 O 0 0 0 Byte Data (8 bits)

95

EORI
to SR

Exclusive OR Immediate to the Status Register
(Privileged Instruction)

EORI
to SR

Operation: If supervisor state

Assembler

then (Source) Ell SR- SR
else TRAP

Syntax: EORI #xxx, SR

Attributes: Size= (Word)

Description: Exclusive OR the immediate operand with the contents of the status register and store the result in the status register. All bits of the status register are affected.

Condition Codes: X N Z V C
5*1*1*1*1

N Changed if bit 3 of immediate operand is one. Unchanged otherwise. Z Changed if bit 2 of immediate operand is one. Unchanged otherwise. V Changed if bit 1 of immediate operand is one. Unchanged otherwise. C Changed if bit 0 of immediate operand is one. Unchanged otherwise. X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1olololol1 lol1 lolol1 l1 l1l1l1lo101 . Word Data (16 bits) .

96

EXG Exchange Registers EXG
Operation: Rx - Ry

Assembler
Syntax: EXG Rx, Ry

Attributes: Size= (Long)

Description: Exchange the contents of two registers. This exchange is always a long (32
bit) operation. Exchange works in three modes:

1. Exchange data registers.
2. Exchange address registers.
3. Exchange a data register and an address register.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction Fields:
Register Rx field - Specifies either a data register or an address register
depending on the mode. If the exchange is between data and address

registers, this field always specifies the data register.
Op-Mode field - Specifies whether exchanging:

01000 - data registers.
01001 - address registers.
10001 - data register and address register.

Register Ry field - Specifies either a data register or an address register
depending on the mode. If the exchange is between data and address
registers, this field always specifies the address register.

97

EXT Sign Extend EXT
Operation: (Destination) Sign-extended- Destination

Assembler
Syntax: EXT Dn

Attributes: Size= (Word, Long)

Description: Extend the sign bit of a data register from a byte to a word or from a word to
a long operand depending on the size selected. If the operation is word
sized, bit [7] of the designated data register is copied to bits [15:8] of that
data register. If the operation is long sized, bit [15] of the designated data
register is copied to bits [31:16] of that data register.

Condition Codes: X N Z V C
1-1·1·10101

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 11 I 0 I 0 11 I 0 I 0 !Op-Mode I 0 I 0 I 0 I Register I
Instruction Fields:

Op-Mode Field - Specifies the size of the sign-extension operation:
010 - Sign-extend low order byte of data register to word.
011 - Sign-extend low order word of data register to long.

Register field - Specifies the data register whose content is to be sign
extended.

98

ILLEGAL Illegal Instruction

Operation: PC- -(SSP); SR- -(SSP)
(Illegal Instruction Vector)- PC

Attributes: None

ILLEGAL

Description: This bit pattern causes an illegal instruction exception. All other illegal in
struction bit patterns are reserved for future extension of the instruction
set.

Condition Codes: Not affected.

Instruction Forll}at:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101110111011111111111110101

99

JMP Jump JMP
Operation: Destination -- PC

Assembler
Syntax: JMP <ea>

Attributes: Unsized

Description: Program execution continues at the effective address specified by the in·
struction. The address is specified by the control addressing modes.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the address of the next instruction.

Only control addressing modes are allowed as shown:
Addressln_s._ Mode Mode Re_s._lster Addressl'!9_ Mode Mode R~ster

Dn - - d(An, Xi) 110 register number
An - - Abs Yi_ 111 _QQQ_

(An) 010 register number Abs.L 111 001
(An}+ - - d(P:9 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

100

JSR Jump to Subroutine JSR
Operation: PC- -(SP); Destination- PC

Assembler
Syntax: JSR <ea>

Attributes: Unsized

Description: The long word address of the instruction immediately following the JSR in
struction is pushed onto the system stack. Program execution then con
tinues at the address specifed in the instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o 0 1 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the address of the next instruction.

Only control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - - d(An, Xi) 110 r~ister number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ - - d(PC) 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

101

LEA Load Effective Address LEA
Operation: Destination --An

Assembler
Syntax: LEA <ea> , An

Attributes: Size = (Long)

Description: The effective address is loaded into the specified address register. All 32
bits of the address register are affected by this instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 Register 1 1 Effective Address
Mode Register

Instruction Fields:
Register field - Specifies the address register which is to be loaded with

the effective address.
Effective Address field - Specifies the address to be loaded into the ad

dress register. Only control addressing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode R'!9:1ster

Dn - - <Il:An, X[110 r~gister number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ - - d(PC) 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

102

LINK Link and Allocate LINK
Operation: An-- -(SP); SP-An; SP+d--SP

Assembler
Syntax: LINK An, #<displacement>

Attributes: Unsized

Description: The current content of the specified address register is pushed onto the
stack. After the push, the address register is loaded from the updated stack
pointer. Finally, the 16-bit sign-extended displacement is added to the
stack pointer. The content of the address register occupies two words on
the stack. A negative displace_ment is specified to allocate stack area.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7. 6 5 4 3 2 1 0
O 1 0 O 1 1 1 0 0 1 0 1 0 Register

Displacement

Instruction Fields:
Register field - Specifies the address register through which the link is to

be constructed.
Displacement field - Specifies the twos complement integer which is to

be added to the stack pointer.

Note: LINK and UNLK can be used to maintain a linked l!st of local data and
parameter areas on the stack for nested subroutine calls.

103

LSL, LSR Logical Shift LSL,LSR
Operation:

Assembler
Syntax:

Attributes:

Description:

LSL:

LSR:

(Destination) Shifted by <count> - Destination

LSd Dx, Dy
LSd #<data>, Dy
LSd <ea>

Size= (Byte, Word, Long)

Shift the bits of the operand in the direction specified. The carry bit
receives the last bit shifted out of the operand. The shift count for the shif
ting of a register may be specified in two different ways:

1. Immediate - the shift count is specified in the instruction (shift range
1-8).

2. Register - the shift count is contained in a data register specified in
the instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only and the operand size is
restricted to a word.

For LSL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit.

Operand

For LSR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; zeroes are shifted into the high order bit.

·I ~~~~~~~~~~ Operand

- Continued -

104

LSL, LSR Logical Shift LSL, LSR

Condition Codes: X N Z V C

1·1·1·101· I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set accord ing to the last bit shifted out of the operand. Cleared for

a shift count of zero.
X Set according to the last bit shifted out of the operand. Unaffected

for a shift count of zero.

Instruction Format (Register Shifts):
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

1 1 o Count/ dr Size i/r 0 Register
Register

Instruction Fields (Register Shifts):
Count/Register field -

If i/r = 0, the shift count is specified in this field. The values 0, 1-7 repre
sent a range of 8, 1 to 7 respectively.
If i/r = 1, the shift count (modulo 64) is contained in the data register
specified in this field.

dr field - Specifies the direction of the shift:
0 - shift right.
1 - shift left.

Size field - Specifies the size of the operation: 00 - byte operation .
01 - word operation.
10 - long operation .

i/r field -
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.

Register field - Specifies a data register whose content is to be shifted.

- Continued -

105

LSL,LSR Logical Shift LSL,LSR

Instruction Format (Memory Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 1 dr Effective Address
Mode Register

Instruction Fields (Memory Shifts):
dr field - Specifies the direction of the shift:

O - shift right.
1 - shift left.

Effective Address field - Specifies the operand to be shifted. Only memory
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode R~lster

lJn - - d(An, XTI_ 110 r~ister number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 rE!.9_ister number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

106

MOVE Move Data from Source to Destination MOVE
Operation: (Source)- Destination

Assembler
Syntax: MOVE <ea>, <ea>

Attributes: Size= (Byte, Word, Long)

Description: Move the content of the source to the destination location. The data is ex
amined as it is moved, and the condition codes set accordingly. The size of
the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C

1-1 • I· Io I oJ
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

0 0 Size Destination
Register Mode

Source
Mode Register

Instruction Fields:
Size field - Specifies the size of the operand to be moved:

01 - byte operation.
11 - word operation.
10 - long operation.

Destination Effective Address field - Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
:.Q.:n _QC)()_ register num:E::er]J!n,--x[T1Q: register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PG) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

- Continued -

107

MOVE Move Data from Source to Destination MOVE
Instruction Fields: (Continued)

Source Effective Address field - Specifies the source operand. All ad
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
:Q:n _(lQQ_ register number d(An,JQ) 110 register number
An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001
~)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*For byte size operation, address register direct is not allowed.

Notes: 1. MOVEA is used when the destination is an address register. Most
assemblers automatically make this distinction.

2. MOVEQ can also be used for certain operations on data registers.

108

MOVE
from CCR

Move from the
Condition Code Register MOVE

from CCR
Operation: CCR- Destination

Assembler
Syntax: MOVE CCR, <ea>

Attributes: Size= (Word)

Description: The content of the status register is moved to the destination location. T~e
source operand is a word, but only the low order byte contains the condi
tion codes. The upper byte is all zeros.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 Effective lAddress
Mode Register

Instruction Fields:
Effective Address field - Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

Note: MOVE to CCR is a word operation. AND, OR, and EOR to CCR are byte operations.

109

MOVE
to CCR

Move to Condition Codes MOVE
to CCR

Operation: (Source)- CCR

Assembler
Syntax: MOVE <ea>, CCR

Attributes: Size= (Word)

Description: The content of the source operand is moved to the condition codes. The
source operand is a word, but only the low order byte is used to update the
condition codes. The upper byte is ignored.

Condition Codes: X N Z V C

Instruction Format:

1·1·1·1·1·1
N Set the same as bit 3 of the source operand.
Z Set the same as bit 2 of the source operand.
V Set the same as bit 1 of the source operand.
C Set the same as bit 0 of the source operand.
X Set the same as bit 4 of the source operand.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the location of the source operand.

Only data addressing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode Register

On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 r~ister number Abs.L 111 001
(An)+ 011 reg ister number d(PC) 111 010
-(An) 100 reg ister number d(PC, Xi) 111 011
d(An) 101 reg ister number Imm 111 100

Note: MOVE to CCR is a word operation. AND, OR, and EOR to CCR are byte
operations.

110

MOVE
to SR

Move to the Status Register
(Privileged Instruction)

MOVE
to SR

Operation: If supervisor state

Assembler

then (Source)- SR
else TRAP

Syntax: MOVE <ea>, SR

Attributes: Size =(Word)

Description: The content of the source operand is moved to the status register. The
source operand is a word and all bits of the status register are affected.

Condition Codes: Set according to the source operand.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the location of the source operand.

Only data addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 r~ister number <!(_An , X_!l 110 r~ister number
An - - Abs.W 111 000

(An) 010 r~ister number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

111

MOVE
from SR

Move from the Status Register MOVE
from SR

Operation: SR- Destination

Assembler
Syntax: MOVE SR, <ea>

Attributes: Size =(Word)

Description: The content of the status register is moved to the destination location. The
operand size is a word .

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
_Q_n _QCJQ_ register num_Q_er O{An,JGT TfO register numoer
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-~l 100 register numoer d(PC, Xi) - -
d(An) 101 register number Imm - -

Note: A memory destination is read before it is written to.

112

MOVE
from SR

Move from the Status Register
(Privileged Instruction) MOVE

from SR
Operation: If supervisor state

Assembler

then SR- Destination
else TRAP

Syntax: MOVE SR, <ea>

Attributes: Size= (Word)

Description: The content of the status register is moved to the destination location. The

operand size is a word.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 65 4 32 1 0

0 0 0 0 0 0 0
Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 register number d(An, Xi) 110 register number

An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

NOTE: Use the MOVE from CCR instruction to access the conditon codes.

113

MOVE
USP

Move User Stack Pointer
(Privileged Instruction)

Operation:

Assembler
Syntax:

Attributes:

If supervisor state
then USP-An;

An-USP
else TRAP

MOVE USP, An
MOVE An, USP

Size= (Long)

MOVE
USP

Description: The contents of the user stack pointer are transferred to or from the
specified address register.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 \ 1 \ 0 \ 0 \ 1 11 11 I 0 I 0 11 11 I 0 I dr I Register I
Instruction Fields:

dr field - Specifies the direction of transfer:
0 - transfer the address register to the USP.
1 - transfer the USP to the address register.

Register field - Specifies the address register to or from which the user
stack pointer is to be transferred.

114

MCVEA Move Address MCVEA
Operation: (Source)- Destination

Assembler
Syntax: MOVEA <ea>, An

Attributes: Size =(Word, Long)

Description: Move the content of the source to the destination address register. The size
of the operation may be specified to be word or long. Word size source
operands are sign extended to 32 bit quantities before the operation is
done.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Size Desti~ation 0 0 Source
Register Mode Register

Instruction Fields:
Size field - Specifies the size of the operand to be moved:

11 - Word operation. The source operand is sign-extended to a long
operand and all 32 bits are loaded into the address register.
10 - Long operation.

Destination Register field - Specifies the destination address register.
Source Effective Address field - Specifies the location of the source

operand. All addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode R~lster
L>n 000 register number d(An, Xi) 110 register number
An 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

115

MOVEC Move to/from Control Register
(Privileged Instruction) MOVEC

Operation:

Assembler
Syntax:

Attributes:

Description:

If supervisor state
then Re-Rn, Rn-Re
else TRAP

MOVEC Re, Rn
MOVEC Rn, Re

Size= (Long)

Copy the contents of the specified control register to the specified general
register or copy the contents of the specified general register to the
specified control register. This is always a 32-bit transfer even though the
control register may be implemented with fewer bits. Unimplemented bits
are read as zeros.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0

AID Register Control Register

Instruction Fields:
dr field - Specifies the direction of the transfer:

0-control register to general register.
1-general register to control register.

AID field - Specifies the type of general register:
0-data register.
1-address register.

1 0

Register field - Specifies the register number.
Control Register field - Specifies the control register.
Currently defined control registers are:

Binary Hex Name/Function
0000 0000 0000 000 Source Function Code (SFC) register.

dr

0000 0000 0001 001 Destination Function Code (DFC) register.
1000 0000 0000 800 User Stack Pointer.
1000 0000 0001 801 Vector Base Register for exception vector

table.

All other codes cause an illegal instruction exception.

116

MOVEM Move Multiple Registers MOVEM
Operation:

Assembler
Syntax:

Attributes:

Description:

Registers-- Destination
(Source)- Registers

MOVEM <register list>, <ea>
MOVEM <ea>, <register list>

Size= (Word, Long)

Selected registers are transferred to or from consecutive memory location
starting at the location specified by the effective address. A register is
transferred if the bit corresponding to that register is set in the mask field.
The instruction selects how much of each register is transferred; either the
entire long word can be moved or just the low order word. In the case of a
word transfer to the registers, each word is sign-extended to 32 bits (also
data registers) and the resulting long word loaded into the associated
register.

MOVEM allows three forms of address modes: the control modes, the
predecrement mode, or the post increment mode. If the effective address is
in one of the control modes, the registers are transferred starting at the
specified address and up through higher addresses. The order of transfer is
from data register 0 to data register 7, then from address register O to ad
dress register 7.

If the effective address is in the predecrement mode, only a register to
memory operation is allowed. The registers are stored starting at the
specified address minus two and down through lower addresses. The order
of storing is from address register 7 to address register 0, then from data
register 7 to data register 0. The decremented address register is updated
to contain the address of the last word stored.

If the effective address is in the postincrement mode, only a memory to
register operation is allowed. The registers are loaded starting at the
specified address and up through higher addresses. The order of loading is
the same as for the control mode addressing. The incremented address
register is updated to contain the address of the last word loaded plus two.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1 o o dr 0 0 Sz Effective Address
Mode Re ister

Register List Mask

117

- Continued -

MOVEM Move Multiple Registers MOVEM
Instruction Fields:

dr field:
Specifies the direction of the transfer:
O - register to memory
1 - memory to register.

Sz field - Specifies the size of the registers being transferred:
0 - word transfer.
1 - long transfer.

Effective Address field - Specifies the memory address to or from which
the registers are to be moved.
For register to memory transfer, only control alterable addressing
modes or the predecrement addressing mode are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An

(An)
(An)+
-(An)
d(An)

- - dj_An XU. 110 re_gister number
- - Abs.W 111 000

010 register number Abs.L 111 001
- - d(PC) - -

100 register number d(PC, Xi) - -
101 register number Imm - -

For memory to register transfer, only control addressing modes or the
postincrement addressing mode are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An

(An)
(An)+
-(An)
d(An)

- - d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) 111 010
- - d(PC, Xi) 111 011

101 register number Imm - -

Register List Mask field - Specifies which registers are to be transferred.
The low order bit corresponds to the first register to be transferred;
the high bit corresponds to the last register to be transferred. Thus,
both for control modes and for the post increment mode addresses, the
mask correspondence is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I A7IA6IA5IA4IA3IA2IA1 IAolo1lo6ID5ID4ID3lo2lo1I ool

while for the predecrement mode addresses, the mask correspondence is
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 00101102103ID4ID5ID6ID1IAo jA1 IA2jA3IA4IA5IA6IA1I

Note: An extra read bus cycle occurs for memory operands. This amounts to a
memory word at one address higher than expected being addressed during
operation .

118

MOVEP Move Peripheral Data MOVEP
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source)- Destination

MOVEP Ox, d(Ay)
MOVEP d(Ay), Ox

Size= {\Nord, Long)

Data is transferred between a data register and alternate bytes of memory,
starting at the location specified and incrementing by two. The high order
byte of the data register is transferred first and the low order byte is
transferred last. The memory address is specified using the address
register indirect plus displacement addressing mode. If the address is
even, all the transfers are made on the high order half of the data bus; if the
address is odd, all the transfers are made on the low order half of the data
bus.

Example: Long transfer to/from an even address.

Byte organization in register
31 24 23 16 15 8 7 0

I hi-order I mid-upper I mid-lower I low-order I

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

hi-order
mid-upper
mid-lower
low-order

Example: Word transfer to/from an odd address.

Byte organization in register
31 24 23 16 15 8 7 0

I hi-order I low-order

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

hi-order
low-order

Condition Codes: Not affected.

- Continued -

119

MOVEP
Instruction Format:

15 14 13 12

0 0 0 0

Instruction Fields:

Move Peripheral Data

11 10 9 8 7 6 5 4

Data
Register Op-Mode 0 0

isplacement

3

MOVEP

2 1 0

Address
Register

Data Register field - Specifies the data register to or from which the data
is to be transferred.

Op-Mode field - Specifies the direction and size of the operation:
100 - transfer word from memory to register.
101 - transfer long from memory to register.
110 - transfer word from register to memory.
111 - transfer long from register to memory.

Address Register field - Specifies the address register which is used in
the address register indirect plus displacement addressing mode.

Displacement field - Specifies the displacement which is used in calculat
ing the operand address.

120

MOVEQ Move Quick MOVEQ
Operation: Immediate Data- Destination

Assembler
Syntax: MOVEQ #<data>, Dn

Attributes: Size =(Long)

Description: Move immediate data to a data register. The data is contained in an 8-bit
field within the operation word. The data is sign-extended to a long operand
and all 32 bits are transferred to the data register.

Condition Codes: X N Z V C

1-l*l*lolol
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 11 11 11 I Register I 0 I Data

Instruction Fields:
Register field - Specifies the data register to be loaded.
Data field - 8 bits of data which are sign extended to a long operand.

121

MOVES Move to/from Address Space
(Privileged Instruction) MOVES

Operation:

Assembler
Syntax:

Attributes:

Description:

If supervisor state
then Rn- Destination < DFC>
Source < SFC> - Rn
else TRAP

MOVES Rn, <ea>
MOVES <ea>, Rn

Size= (Byte, Word, Long)

Move the byte, word, or long operand from the specified general register to
a location within the address space specified by the destination function
code (DFC) register. Or, move the byte, word, or long operand from a loca
tion within the address space specified by the source function code (SFC)
register to the specified general register.

If the destination is a data register, the source operand replaces the cor
responding low-order bits of the that data register. If the destination is an
address register, the source operand is sign-extended to 32 bits and then
loaded into that address register.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 oioio 1 1 1 0 Size Effective Address

A/D Register dr 0 0 0 oio oJoToloToTo
Instruction Fields:

Size field - Specifies the size of the operation:
00-byte operation.
01-word operation.
10-long operation.

A/D field - Specifies the type of general register:
0-data register.
1-address register.

Register field - Specifies the register number.
dr field - Specifies the direction of the transfer:

0-from <ea> to general register.
1-from general register to <ea>.

122

-Continued-

MOVES Move to/from Address Space
(Privileged Instruction)

Instruction Fields: (continued)

MOVES
Effective Address field - Specifies the source or destination loca

tion within the alternate address space. Only alterable memory
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - - d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

123

MULS Signed Multiply MULS
Operation: (Source)*(Destination)- Destination

Assembler
Syntax: MULS <ea>, On

Attributes: Size= (Word)

Description: Multiply two signed 16-bit operands yielding a 32-bit signed result. The
operation is performed using signed arithmetic. A register operand is taken
from the low order word; the upper word is unused. All 32 bits of the product
are saved in the destination data register.

Condition Codes: X N Z V C
1-1·1·10101

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared .
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o o Register 1 1 1 Effective Address
Mode Register

Instruction Fields:
Register field - Specifies one of the data registers . This field always

specifies the destination.
Effective Address field - Specifies the source operand. Only data ad

dressing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode Register

lJn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 r~ster number Abs.L 111 001
(An)+ 011 r~ster number dJPCl 111 010
-(An) 100 register number d(PC, Xi) 111 011
d~) 101 register number Imm 111 100

124

MULU Unsigned Mulitply MULU
Operation: (Source)*(Destination)- Destination

Assembler
Syntax: MULU <ea>, Dn

Attributes: Size= (Word)

Description: Multiply two unsigned 16-bit operands yielding a 32-bit unsigned result. The

operation is performed using unsigned arithmetic. A register operand is

taken from the low order word; the upper word is unused. All 32 bits of the

product are saved in the destination data register.

Condition Codes: X N Z V C

1-1·1·10101

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Register 0 1 Effective Address
Mode Register

Instruction Fields:
Register field - Specifies one of the data registers. This field always spe·

cifies the destination.
Effective Address field - Specifies the source operand. Only data address·

ing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 register number d(An, Xi) 110 register number

An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010

-~nl 100 register number d(PC, Xi) 111 011

d(An) 101 register number Imm 111 100

125

NBCD Negate Decimal with Extend NBCD
Operation: O-(Destination)10- x- Destination

Assembler
Syntax: NBCD <ea>

Attributes: Size= (Byte)

Description: The operand addressed as the destination and the extend bit are subtracted from zero. The operation is performed using decimal arithmetic. The result is saved in the destination location. This instruction produces the tens complement of the destination if the extend bit is clear, the nines complement if the extend bit is set. This is a byte operation only.

Condition Codes: X N Z V C
l*IUl*IUl*I

N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a borrow (decimal) was generated. Cleared otherwise. X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple
precision operations.

Instruction Format:
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the destination operand. Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register Dn 000 register number d(An, Xi) 110 register number An - - Abs.W 111 000 (An) 010 register number Abs.L 111 001 (An)+ 011 register number d(PC) - --(An) 100 register number d(PC, Xi) - -d(An) 101 register number Imm - -

126

NEG Negate NEG
Operation: O - (Destination)- Destination

Assembler
Syntax: NEG <ea>

Attributes: Size= (Byte, Word, Long)

Description: The operand addressed as the destination is subtracted from zero. The
result is stored in the destination location. The size of the operation may be
specified to be byte, word, or long.

Condition Codes: X N Z V C

l*I *I *I *I* I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Cleared if the result is zero. Set otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 Size Effective Address
Mode Register

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation .
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(P-c) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Tmm - -

127

NEGX Negate with Extend NEGX
Operation: 0-(Destination)- x- Destination

Assembler
Syntax: N EGX <ea>

Attributes: Size= (Byte, Word, Long)

Description: The operand addressed as the destination and the extend bit are sub
tracted from zero. The result is stored in the destination location. The size
of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C

I* I * I * I *I *I
N Set it the result is negative. Cleared otherwise.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Set it an overflow is generated . Cleared otherwise.
C Set it a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests tor zero results upon completion of multiple
precision operations.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 Size Effective Address
Mode Register

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation .
01 - word operation .
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Re_9!ster Addressln_g_ Mode Mode R~ster
Dn 000 register number d(An, Xi) 110 register number
An - - AbsW 111 000
(An) 010 r~ister number Abs.L 111 001

(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

128

NOP No Operation NOP
Operation: None

Assembler
Syntax: NOP

Attributes: Unsized

Description: No operation occurs. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP
instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101010111

129

NOT Logical Complement NOT
Operation: -(Destination)- Destination

Assembler
Syntax: NOT <ea>

Attributes: Size= (Byte, Word , Long)

Description: The ones complement of the destination operand is taken and the result
stored in the destination location. The size of the operation may be
specified to be byte, word, or long.

Condition Codes: X N Z V C
1-1 * I * I o I o I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared .
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 Size Effective Address
Mode Register

Instruction Fields:
Size f ield - Specifies the size of the operation:

00 - byte operation.
01 - word operat ion.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

130

OR
Operation:

Assembler
Syntax:

Attributes:

Description:

Inclusive OR Logical

(Source) v (Destination)- Destination

OR <ea>, Dn
OR Dn, <ea>

Size= (Byte, Word, Long)

OR

Inclusive OR the source operand to the destination operand and store the
result in the dest ination location. The size of the operation may be
specified to be byte, word, or long. The contents of an address register may
not be used as an operand.

Condition Codes: X N Z V C
1-1·1·1010 1

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 (<Dn>)v(<ea>)-<Dn>
100 101 110 (<ea>)v(<Dn>)-<ea>

Effective Address field -
If the location specified is a source operand then only data addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

- Continued -

131

OR Inclusive OR Logical OR
Effective Address field (Continued)

If the location specified is a destination operand then only memory alter
able addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An)+
-(An1
d(An)

Notes:

- - d(An, Xi) 110 register number
- - Abs.W 111 000

010 re_g_ister number Abs.L 111 001
011 register number d(PC) - -
100 re_g_ister number dJPC, Xi) - -
101 register number Imm - -

1. If the destination is a data register, then it cannot be specified by using
the destination <ea> mode, but must use the destination On mode in
stead.

2. ORI is used when the source is immediate data. Most assemblers
automatically make this distinction.

132

ORI Inclusive OR Immediate ORI
Operation: immediate Data v (Destination)-- Destination

Assembler
Syntax: ORI #<data>, <ea>

Attributes: Size= (Byte, Word, Long)

Description: Inclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The size of the immediate data matches
the operation size .

Condition Codes: X N Z V C

1-l*l*lolol
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o o o o 0 Size Effective Address
Mode Register

Word Data (16 bites) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation .
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An

J_An)
(An)+
-J_Anl
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 re_g_ister number Abs.L 111 001
011 register number d(PC) - -
100 register number qi_pc, xu. - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size= 00, then the data is the low order byte of the immediate word.
If size= 01, then the data is the entire immediate word.
If size= 10, then the data is the next two immediate words.

133

ORI Inclusive OR Immediate to Condition Codes

to CCR
ORI

to CCR
Operation: (Source) v CCR-CCR

Assembler
Syntax: ORI #xxx, CCR

Attributes: Size= (Byte)

Description: Inclusive OR the immediate operand with the condition codes and store the
result in the low-order byte of the status register.

Condition Codes: X N Z V C

***l**I
N Set if bit 3 of immediate operand is one. Unchanged otherwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.
X Set if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 Byte Data (8 bits)

134

ORI
to SR

Inclusive OR Immediate to the Status Register
(Privileged Instruction)

ORI
to SR

Operation: If supervisor state

Assembler

then (Source) v SR-SR
else TRAP

Syntax: ORI #xxx, SR

Attributes: Size =(Word)

Description: Inclusive OR the immediate operand with the contents of the status
register and store the result in the status register. All bits of the status
register are affected.

Condition Codes: X N Z V C
l•l•l•l•l•I

N Set if bit 3 of immediate operand is one. Unchanged otflerwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.
X Set if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10JojoJ0JoJ0JoJ0JoJ1J1J1J1J1JoJol
. Word Data (16 bits) .

135

PEA Push Effective Address PEA
Operation: Destination -- - (SP)

Assembler
Syntax: PEA <ea>

Attributes: Size= (Long)

Description: The effective address is computed and pushed onto the stack. A long word
address is pushed onto the stack.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the address to be pushed onto the

stack. Only control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - - d(An, Xi) 110 r~ster number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ - - d(PC) 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

136

RESET
Operation: If supervisor state

Reset External Devices
(Privileged Instruction)

then Assert RESET Line
else TRAP

Assembler
Syntax: RESET

Attributes: Unsized

RESET

Description: The reset line is asserted causing all external devices to be reset. The pro
cessor state, other than the program counter, is unaffected and execution
continues with the next instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101010101

137

ROL
ROR

Rotate (without Extend) ROL
ROR

Operation:

Assembler
Syntax:

Attributes:

Description:

AOL:

ROA:

(Destination) Rotated by <count> - Destination

ROd Ox, Dy
ROd #<data>, Dy
ROd <ea>

Size= (Byte, Word, Long)

Rotate the bits of the operand in the direction specified. The extend bit is
not included in the rotation. The shift count for the rotation of a register
may be specified in two different ways:

1. Immediate - the shift count is specified in the instruction (shift range,
1-8).

2. Register - the shift count is contained in a data register specified in
the instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be rotated one bit only and the operand size is
restricted to a word.

For AOL, the operand is rotated left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry bit and
back into the low order bit. The extend bit is not modified or used.

0..I ~' _oper_and _____,~
For ROA, the operand is rotated right; the number of position shifted is the
shift count. Bits shifted out of the low order bit go to both the carry bit and
back into the high order bit. The extend bit is not modified or used.

Condition Codes: X N Z V C

1-1·1·101·1
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shfited out of the operand. Cleared for

a shift count of zero.
X Not affected.

- Continued -

138

ROL
ROR

Rotate (Without Extend)

Instruction Format (Register Rotate):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 o Count/ dr Size i/r
Register

Instruction Fields (Register Rotate):
Count/Register field -

Register

ROL
ROR

if i/r = 0, the rotate count is specified in this field. The values 0, 1-7
represent a range of 8, 1 to 7 respectively.
If i/r = 1, the rotate count (modulo 64) is contained in the data register
specified in this field .

dr field - Specifies the direction of the rotate:
0 - rotate right.
1 - rotate left.

Size field - Specifies the size of the operation:
00 - byte operation .
01 - word operation.
10 - long operation .

i/r field -
If i/r = 0, specifies immediate rotate count.
If i/r = 1, specifies register rotate count.

Register field - Specifies a data register whose content is to be rotated.

Instruction Format (Memory Rotate):
15 14 13 12 11 10 9 8 7

1 1 0 0 1 dr

Instruction Fields (Memory Rotate):
dr field - Specifies the direction of the rotate:

0 - rotate right
1 - rotate left.

Effective Address field - Specifies the operand to be rotated. Only
memory alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - - d(An, Xi) 110 r~ister number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

139

ROXL
ROXR

Rotate with Extend ROXL
ROXR

Operation:

Assembler
Syntax:

Attributes:

Description:

ROXL:

ROXR:

(Destination) Rotated by <count> Destination

ROXd Ox, Dy
ROXd #<data>, Dy
ROXd <ea>

Size= (Byte, Word, Long)

Rotate the bits of the destination operand in the direction specified. The ex
tend bit is included in the rotation. The shift count for the rotation of a
register may be specified in two different ways:

1. Immediate - the shift count is specified in the instruction (shift
range, 1-8).

2. Register - the shift count is contained in a data register specified in
the instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be rotated one bit only and the operand size is
restricted to a word.

For ROXL, the operand is rotated left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and ex
tend bits; the previous value of the extend bit is shifted into the low order
bit.

Operand

For ROXR, the operand is rotated right; the number of positions shifted is
the shift count. Bits shifted out of the low order bit go to both the carry and
extend bits; the previous value of the extend bit is shifted into the high
order bit.

Operand

- Continued -

140

ROXL
ROXR

Rotate with Extend

Condition Codes: X N Z V C

I • I • I * I o I * I

ROXL
ROXR

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shifted out of the operand. Set to the

value of the extend bit for a shift count of zero.
X Set according to the last bit shifted out of the operand. Unaffected

for a shift count of zero.

Instruction Format (Register Rotate):
15 14 13 12 11 10 9 8 7 6 5 4

1 o Count/ dr Size i/r
Register

Instruction Fields (Register Rotate):
Count/Register field:

3 2 0

0 Register

If i/r=O, the rotate count is specified in this field . The values 0, 1-7
represent range of 8, 1 to 7 respectively .
If i/r = 1, the rotate count (modulo 64) is contained in the data register
specified in this field.

dr field - Specifies the direction of the rotate:
0 - rotate right.
1 - rotate left.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

i/r field -
If i/r = 0, specifies immediate rotate count.
If i/r = 1, specif ies register rotate count.

Register field - Specifies a data register whose content is to be rotated.

- Continued -

141

ROXL
ROXR

Rotate with Extend ROXL
ROXR

Instruction Format (Memory Rotate):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 dr Effective Address
Mode Register

Instruction Fields (Memory Rotate):
dr field - Specifies the direction of the rotate:

0 - rotate right.
1 - rotate left.

Effective Address field - Specifies the operand to be rotated. Only
memory alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - - d(An, Xi) 110 register number

An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(Anl+ 011 register number dJPCI - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Tmm - -

142

RTD RTD
Return and Deallocate Parameters

Operation: (SP)+-PC; SP+d-SP

Assembler
Syntax: RTD #<displacement>

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter value is lost. After the program counter is read from the stack, the
displacement value is sign-extended to 32 bits and added to the stack
pointer.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0

Displacement

Instruction Field:
Displacement field - Specifies the twos complement integer which is to
be sign-extended and added to the stack pointer.

143

RTE
Operation: If supervisor state

Return from Exception
(Prlvlleged Instruction)

then (SP)+ - SR; (SP)+ - PC
else TRAP

Assembler
Syntax: RTE

Attributes: Unsized

RTE

Description: The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. All bits in the
status register are affected.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101011111

144

RTE Return from Exception
(Privileged Instruction)

Operation: If supervisor state

Assembler

then (SP)+ - SR; (SP)+ - PC
If (SP)+ =long format

then full restore
else TRAP

Syntax: RTE

Attributes: Unsized

RTE

Description: The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. The vector off
set word is also pulled from the stack and the format field is examined to
determine the amount of information to be restored.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1°1 1°1°1 11 1 1°1°1 I I 1°1°1 11 1
Vector Offset Word Format:

15 12 11 10 9 0

Format I 0 I 0 I Vector Offset

Vector Offset Word Format Fields:
Format Field: - Specifies the amount of information to be restored.

0000 - Short. Four words are to be removed from the top of the stack.
1000 - Long. Twenty-nine words are to be removed from the top of the

stack.
Any Other

Pattern - Error. The processor takes the format error exception.

145

RTR Return and Restore Condition Codes RTR
Operation: (SP)+ - CC; (SP)+ - PC

Assembler
Syntax: RTR

Attributes: Unsized

Description: The condition codes and program counter are pulled from the stack. The
previous condition codes and program counter are lost. The supervisor por
tion of the status register is unaffected.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101111111

146

RTS Return from Subroutine RTS
Operation: (SP) + -- PC

Assembler
Syntax: RTS

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter is lost.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101110111

147

SBCD Subtract Decimal with Extend SBCD
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination)10-(Source)10- X- Destination

SBCD Dy, Dx
SBCD - (Ay), - (Ax)

Size= (Byte)

Subtract the source operand from the destination operand along with the
extend bit and store the result in the destination location. The subtraction
is performed using binary coded decimal arithmetic. The operands may be
addressed in two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecre
ment addressing mode using the address registers specified in the
instruction.

This operation is a byte operation only.

Condition Codes: X N Z V C

l*IUl*IUl*I
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a borrow (decimal) is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm

ing before the start of an operation. This allows suc
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J 1 J o J o J o J Re~:ter J 1 I o I o I o I o J ~ J Re~;ter I
Instruction Fields:

Register Rx field - Specifies the destination register:
If RIM= o, specifies a data register.
If R/M = 1, specifies an address register for the prececrement ad
dressing mode.

R/M field - Specifies the operand addressing mode:
O - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement address
ing mode.

148

Sec Set According to Condition

Operation: If (Condition True)

Assembler

then 1s- Destination
else Os- Destination

Syntax: Sec <ea>

Attributes: Size= (Byte)

Sec

Description: The specified condition code is tested; if the condition is true, the byte
specified by the effective address is set to TRUE (all ones), otherwise that
byte is set to FALSE (all zeroes). "cc" may specify the following conditions:

cc carry clear 0100 c LS low or same 0011 C+Z
cs carry set 0101 c LT less than 1101 N·V + N·V
EQ equal 0111 z Ml minus 1011 N
F false 0001 0 NE not equal 0110 z

GE greater or equal 1100 N•V + N·Y Pl plus 1010 N
GT greater than 1110 N•V•Z+N·V·Z T true 0000 1
HI high 0010 C·Z vc overflow clear 1000 v
LE less or equal 1111 Z+N•V+N•V vs overflow set 1001 v

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Condition Effective Address
Mode Register

Instruction Fields:
Condition field - One of sixteen conditions discussed in description.
Effective Address field - Specifies the location in which the true/false

byte is to be stored. Only data alterable addressing modes are allowed
as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An
(An)

(An)+
-(An)
d(An)

Notes:

000 register number d(An, Xi) 110 register number
- - Abs-Y'{ 111 _Q_O_Q_

010 re_g_ister number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

1. A memory destination is read before being written to.
2. An arithmetic one and zero result may be generated by following the Sec

instruction with a NEG instruction.

149

STOP Load Status Register and Stop
(Privileged Instruction)

Operation: If supervisor state

Assembler

then Immediate Data- SR; STOP
else TRAP

Syntax: STOP #xxx

Attributes: Unsized

STOP

Description: The immediate operand is moved into the entire status register; the pro
gram counter is advanced to point to the next instruction and the processor
stops fetching and executing instructions. Execution of instructions
resumes when a trace, interrupt, or reset exception occurs. A trace excep
tion will occur if the trace state is on when the STOP instruction is ex
ecuted. If an interrupt request arrives whose priority is higher than the cur
rent processor priority, an interrupt exception occurs, otherwise the inter
rupt request has no effect. If the bit of the immediate data corresponding to
the ·S-bit is off, execution of the instruction will cause a privilege violation.
External reset will always initiate reset exception processing. ·

Condition Codes: Set according to the immediate operand.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I o I 1 I o I o I 1 I 1 11 I o_ I o I 1 11 I 1 I o I o I 1 I o I
. Immediate Data .

Instruction Fields:
Immediate field - Specifies the data to be loaded into the status register.

150

SUB Subtract Binary SUB
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination)- (Source)- Destination

SUB <ea>, Dn
SUB Dn, <ea>

Size= (Byte, Word, Long)

Subtract the source operand from the destination operand and store the
result in the destination. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

Condition Codes: X N Z V C

I • I • I • I • I • I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if ari overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 (<Dn>)-(<ea>)-<Dn>
100 101 110 (<ea>)-(<Dn>)- <ea>

Effective Address field - Determines addressing mode:
If the location specified is a source operand, then all addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode R~lster
l:>n 000 register number d(An, Xi) 110 register number
~n· 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*For byte size operation, address register direct is not allowed.

- Continued -

151

SUB Subtract Binary · SUB
Effective Address field (Continued)

If the location specified is a destination operand, then only alterable
memory addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Notes:

Dn - - d(An, Xi) 110 register number
An - - Abs.W 111 000

lAnI 010 re_g_ister number Abs.L 111 001
(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC,l<i) - -
d(An) 101 register number Tmm - -

1. If the destination is a data register, then it cannot be specified by using
the destination <ea> mode, but must use the destination Dn mode in·
stead.

2. SUBA is used when the destination is an address register. SUBI and
SUBQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

152

SUBA Subtract Address SUBA
Operation: (Destination)- (Source)-- Destination

Assembler
Syntax: SUBA <ea>, An

Attributes: Size= (Word, Long)

Description: Subtract the source operand from the destination address register and
store the result in the address register. The size of the operation may be
specified to be word or long. Word size source operands are si(l:-1 extended
to 32 bit quantities before the operation is done.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

0 0 Register Op-Mode Effective Address
Mode Register

Instruction Fields:
Register field - Specifies any of the eight address registers. This is al

ways the destination.
Op-Mode field - Specifies the size of the operation:

011 - Word operation. The source operand is sign-extended to a
long operand and the operation is performed on the address register
using all 32 bits.
111 - Long operations.

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 r~ster number <!(_An, Xii. 110 re_g_ister number
An 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 11J1 register number Imm 111 100

153

SUBI Subtract Immediate SUBI
Operation: (Destination)- Immediate Data- Destination

Assembler
Syntax: SUBI #<data>, <ea>

Attributes: Size= (Byte, Word, Long)

Description: Subtract the immediate data from the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes: X N Z V C
l*I *I* l*I *I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o o o 0 0 Size Effective Address
Mode Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation.

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressln_g_ Mode Mode Register Addressing Mode Mode Register
Dn
An

(An)
(An)+
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction)
If size= 00, then the data is the low order byte of the immediate word.
If size= 01, then the data is the entire immediate word .
If size= 10, then the data is the next two immediate words.

154

SUBQ Subtract Quick SUBQ
Operation: (Destination)- Immediate Data- Destination

Assembler
Syntax: SUBQ #<data>, <ea>

Attributes: Size =(Byte, Word, Long)

Description: Subtract the immediate data from the destination operand. The data range
is from 1-8. The size of the operation may be specified to be byte, word, or
long. Word and long operations are also allowed on the address registers
and the condition codes are not affected. Word size source operands are
sign extended to 32 bit quantities before the operation is done.

Condition Codes: X N Z V C

I* I* I* l•I *I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

The condition codes are not affected if a subtraction from an address
register is made.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Data 1 Size Effective Address
Mode Register

Instruction Fields:
Data field - Three bits of immediate data, 0, 1-7 representing a range of

8, 1 to 7 respectively.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addressing Mode Mode R~ster Addressi'!.9_ Mode Mode Re_9Jster
Dn 000 register number d(An, Xi) 110 register number
An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d~n) 101 register number Imm - -

*Word and Long only.

155

SUBX Subtract with Extend SUBX
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination)- (Source) - X- Destination

SUBX Dy, Dx
SUBX -(Ay), -(Ax)

Size= (Byte, Word, Long)

Subtract the source operand from the destination operand along with the
extend bit and store the result in the destination location. The operands
may be addressed in two different ways:

1. Data register to data register: The operands are contained in data
registers specified in the instruction.

2. Memory to memory. The operands are contained in memory and ad
dressed with the predecre~nt addressing mode using the address
registers specified in the instruction.

The size of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C

l*l*l*l*l*I
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple
precision operations.

Instruction Format:
15 14 13 12 11 10 9 8

0 0 1 Register
Rx

7 6

Size

156

5 4 3 2 1 0

0 0 R/ Register
M Ry

- Continued -

SUBX Subtract with Extend SUBX
Instruction Fields:

Register Rx field - Specifies the destination register:
If RIM= 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement address·
ing mode.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

R/M field - Specifies the operand addressing mode:
0 - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement address
ing mode.

157

SWAP Swap Register Halves SWAP
Operation: Register [31:16]- Register [15:0]

Assembler
Syntax: SWAP On

Attributes: Size= (Word)

Description: Exchange the 16-bit halves of a data register.

Condition Codes: X N Z V C

1-l*l*lolol
N Set if the most significant bit of the 32-bit result is set. Cleared

otherwise.
Z Set if the 32-bit result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I Register I
Instruction Fields:

Register field - Specifies the data register to swap.

158

TAS Test and Set an Operand TAS
Operation: (Destination) Tested- CC; 1-bit 7 OF Destination

Assembler
Syntax: T AS < ea>

Attributes: Size= (Byte)

Description: Test and set the byte operand addressed by the effective address field. The

current value of the operand is tested and N and Z are set accordingly. The

high order bit of the operand is set. The operation is indivisible (using a

read-modify-write memory cycle) to allow synchronization of several pro

cessors.

Condition Codes: X N Z V C

1-l•l• l olol
N Set if the most significant bit of the operand was set . Cleared other-

wise.
Z Set if the operand was zero. Cleared otherwise.

V Always cleared .
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 Effective Address
Mode Register

Instruction Fields:
Effective Address field - Specifies the location of the tested operand.

Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode R4!9_ister

On 000 register number d(An, Xi) 110 register number

An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001

(An)+ 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
dQl:n) 101 register number Imm - -

Note: Bus error retry is inhibited on the read portion of the T AS read-modify-write

bus cycle to ensure system integrity. The bus error exception is always

taken.

159

' TRAP Trap TRAP
Operation: PC- -{SSP); SR- -{SSP); {Vector)- PC

Assembler
Syntax: TRAP#< vector>

Attributes: Unsized

Description: The processor initiates exception processing. The vector humber is
generated to reference the TRAP instruction exception vector specified by
the low order four bits of the instruction. Sixteen TRAP instruction vectors
are available.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

j 0 j 1 I 0 I 0 11 11 j 1 j 0 I 0 I 1 I 0 I 0 I Vector

Instruction Fields:
Vector field Specifies which trap vector contains the new program

counter to be loaded.

160

TRAPV Trap on Overflow TRAPV
Operation: If V then TRAP

Assembler
Syntax: TRAPV

Attributes: Unsized

Description: If the overflow condition is on, the processor initiates exception process·
ing. The vector number is generated to reference the TRAPV excepti0n vec·
tor. If the overflow condition is off, no operation is performed and execu·
tion continues with the next instruction in sequence.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Io 11 IoIo1111I1IoIo111111IoI1I1 I ol

161

TST Test an Operand TST
Operation: (Destination) Tested-CC

Assembler
Syntax: TST <ea>

Attributes: Size= (Byte, Word, Long)

Description: Compare the operand with zero. No results are saved; however, the condi·
tion codes are set according to results of the test. The size of the operation
may be specified to be byte, word, or long.

Condition Codes: X N Z V C
1-1·1·10101

N Set if the operand is negative. Cleared otherwise.
Z Set if the operand is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 Size Effective Address
Mode Register

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressl'!9_ Mode Mode Register Addressing Mode Mode Register
Dn 000 re_g_ister number dJ_An, X!l 110 r~ster number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
IAnl+ 011 re_g_lster number dJ.t:g_ - -t- ···
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

162

UNLK Unlink UNLK
Operation: An- SP; (SP)+ An

Assembler
Syntax: UNLK An

Attributes: Unsized

Description: The stack pointer is loaded from the specified address register. The ad
dress register is then loaded with the long word pulled from the top of the
stack.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I 0 I 1 I 1 I Register I
Instruction Fields:

Register field - specifies the address register through which the unlinking
is to be done.

163

APPENDIX C
INSTRUCTION FORMAT SUMMARY

C.1 INTRODUCTION

This append ix provides a summary of the first word in each instruction of the instruction
set. Table C-1 is an operation code (op-code) map which illustrates how bits 15 through 12
are used to specify the operations. The remaining paragraph groups the instructions ac
cording to the op-code map.

Table C-1. Operation Code Map

Bits
Operation

Bits Operation
15 through 12 15 through 12

0000 Bit Manipulation / MOVEP / Immediate 1000 OR/ DIVI SBCD

0001 Move Byte 1001 SUB/ SUBX

0010 Move Long 1010 (Unassigned I

0011 Move Word 1011 CMP / EOR

0100 Miscel laneous 1100 AND/MULi ABCD / EXG

0101 ADDO/ SU BO / Sec/ DBcc 1101 ADD/ADDX

0110 Bee/ BSA 1110 Shift / Rotate

0111 MOVEO 1111 (Unassigned)

Table C-2. Effective Address Encoding Summary

Addressing Mode Mode Register

Data Register Direct ()()() register number

Add ress Register Direct 001 register number

Add ress Register Indirect 010 register number

Address Register _Indirect with Postincrement 011 register number

Address Register Indirect wi th Predecremen t 100 register number

Address Register Indirect w ith Displacement 101 register number

Address Reg ister Indirect w ith Index 110 register number

Absolute Short 11 1 ()()()

Absolu te Long 111 001

Program Counter with Displacement 111 010

Program Counter with Index 11 1 01 1

Immediate or Status Register 111 100

165

Table C-3. Conditional Tests

Mnemonic Condition

T true

F false

HI high

LS low or sarne

CCIHS) carry dear

CSILO) carry set

NE not equal
EQ equal

VC overflow clear

vs overflow set

PL plus

Ml minus

GE greater or equal

LT less than

GT greater than

LE less or equal

OR Immediate

15 14 13 12 11 10 9

0 0 0 0 0

Size field: 00 = byte
01 =word
10 =long

OR Immediate to CCR

0 b

15 14 13 12 11 10 9

0 0 0 0 0 0

OR Immediate to SR

15 14 13 12 11 10 9

8

0

8

0

8

0 0 0 0 0 0 0 0

166

Encoding Test

0000 1

0001 0

0010 c.z
0011 C+Z

0100 c
0101 c
0110 z
0111 z
1000 v
1001 v
1010 N

1011 N

1100 N•V + N•V

1101 N•V+N•V

1110 N•V•Z+ N•V•Z

1111 Z+N•V+N•V

7 6 5 4 3 2 0

Effective Address
Size l Mode Register

7 6 5 4 3 2 0

ci 0 1 1 1 0 0

7 6 5 4 3 2 0

0 0 0

Dynamic Bit

MOVEP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
0 0 0 0 Register

Type field: 00 = TST
01 :CHG
10=CLR
11 =SET

1 Type l Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 Data
Register

Op-Mode 0 0

Op-Mode field: 100 =transfer word from memory to register
101 =transfer long from 'memory to regi~ter
110 =transfer word from register to memory
111 =transfer long from register to memory

Address
Register

AND Immediate

15 14 13 12 11 10 9 8 7 6 5 4 ~ 2 0

0 0 0 0 0

Size field: 00 = byte
01 =word
10= long

AND Immediate to CCR

0 1 0 Size
Effective Address

Mode l Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0 1 0 0

AND Immediate to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 i 0 0 0 0

167

SUB Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0

Size field: 00 =byte
01 =word
10 =long

1
Effective Address

0 0 Size 1 Register Mode

ADD Immediate

Static Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0

Size field: 00 =byte
01 =word
10= long

1
Effective Address

1 0 Size l Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1

Type field: 00 = TST
01 =CHG
10= CLR
11 =SET

0
Effective Address

0 0 Type l Register Mode

EOR Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1

Size field: 00 =byte
01 =word
10 =long

EOR Immediate to CCR

0
Effective Address

1 0 Size l Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 1 0 0 0 o I o I

168

EOR Immediate to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1 0 0 0 1 1 1 1 0 0

CMP Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1

Size field: 00 = byte
01 =word
10 =word

MOVES MC68010

1 0 0 Size
Effective Address

Mode 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 1 1

Size field: 00 = byte
01 =word
10 =long

MOVE Byte

1
Effective Address

1 0 Size 1 Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 1
Destination

Register 1 Mode

Source

Mode 1 Register

Note register and mode locations

169

MOVEA Long

14 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
0 0 1 0 0 0 1 1 Register Mode Register

MOVE Long

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
0 0 1 0

Register 1 Mode l Mode Register

Note register and mode locations

MOVEA Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 l Destination Source
0 0 1 0 0 1 l Register Mode Register

MOVE Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
0 0 1 1

Register l l Mode Mode Register

Note register and mode locations

170

NEGX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 =byte
01 =word
10= long

0
Effective Address

0 0 Size l Mode Register

MOVE from SR

CHK

LEA

CLR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 0 0 0 0 1 1 J Register Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
0 1 0 0 Register 1 1 0 l Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Address Effective Address
0 1 0 0 Register 1 1 , J Register Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 = byte
01 =word
10= long

0
Effective Address

1 0 Size l Mode Register

171

MOVE from CCR MC68010

NEG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 0 0 1 0 1 1

I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 =byte
01 =word
10 =long

1
Effective Address

0 0 Size I Mode Register

MOVE to CCR

NOT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0
Effective Address

1 1 0 1 1
I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 = byte
01 =word
10 =long

1
Effective Address

1 0 Size 1 Register Mode

MOVE to SR

15 -14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 0 1 1 0 1 1 l Mode Register

172

NBCD

SWAP

PEA

EXT Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0
Effective Address

1 0 0 1 0 0 0 0 0 J Register Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I

0
I I

0
I

0
I

1
I

0
I

0
I

0
I

0
I

1
I

0
I

0
I

0
I

Data
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 1 0 0 0 0 1 J Register Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

MOVEM Registers to EA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1 0

Sz field: 0 =word transfer
1 = long transfer

0

173

Effective Address
0 1 Sz I Mode Register

EXT Long

TST

TAS

ILLEGAL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1

Size field: 00 =byte
01 =word
10 =long

0
Effective Address

1 0 Size l Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 1 0 1 0 1 1 l Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0

MOVEM EA to Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1 1

Sz field: ·o =word transfer
1 = long transfer

0

174

Effective Address
0 1 Sz

l Mode Register

TRAP

LINK

UNLK

15 14 13 12 11 10 9 8 6 5 4 3 2 0

15 14 13 12 11 10 9 8 7 6 5 4 3

15 14 13 12 11 10 9 8 7 6 5 4 3

Vector

2 0

Address
Register

2 0

Address
Register

MOVE to USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Address
Register

MOVE from USP

RESET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

15 14 13 12 11 10 9 8 7 6 5 4

175

Address
Register

3 2 0

a 1 a 1 a 1 a

NOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lol1 lo\ol1i1 \1 \o\o\1 l1 \1\o\o\o\1 I

STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lol1 lolol1i1 l1 lo\ol1 \1 i1iolo\1lol

RTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l 0 11 l 0 1°1 1 l 1 l 1 1°l 0 11 l 1 l 1 l 0 l 0 11 l 1 I

RTD MC68010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lol1 lojoj1 j1 l1 jojol1 l1 j1 joj1 jojol

RTS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

joj1 lojoj1j1 j1 jojoj1 l1 j1 jol1 lol1\

TRAPV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I a\ 1IaIa\1\1\11o\o\1\1\1Io\1\1Io1

176

RTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0

MOVEC MC68010

JSR

JMP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0
dr field: 0 =control register to general register

1 =general register to control register

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 1 1 1 0 1 0

l Mode Register

15 14 13 12 11 10 9 8 6 5 4 3 2 0

Effective Mode
0 1 0 0 1 1 1 0 1 1

l Mode Register

177

ADDO

Sec

DBcc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 1 Data 0 Size l Mode Register

Data field: Three bits of immediate data, 0, 1-7 representing a range of
8, 1 to 7 respectively.

Size field : 00 =byte
01 =word
10 =long

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 1 Condition

Condition field : 0000 =true
0001 =false
0010 =high
0011 = low or same
0100 =carry clear
0101 = carry set
0110 =not equal
0111 =equal

Effective Address
1 1 l Mode

1000 =overflow clear
1001 =overflow set
1010 =plus
1011 =minus
1100 =greater or equal
1101 =less than
1110 =greater than
1111 = less or equal

Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Condition

Condition field: 0000 =true
0001 =false
0010 =high
0011 = low or same
0100 =carry clear
0101 = carry set
0110 = not equal
0111 =equal

178

1000 =overflow clear
1001 =overflow set
1010=plus
1011 =minus
1100 =greater or equal
1101 =less than
1110 =greater than
1111 = less or equal

Data
Register

SUBQ

Bee

BRA

BSR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 1 Data 1 Size

Mode l Register

Data f ield : Three bits of immediate data, 0, 1-7 representing a range of
8, 1 to 7 respectively.

Size field: 00 =byte
01 =word
10 =long

15 14 13 12 11 10 9 8 6 5 4 3 2

0 0 Condition 8-Bit Displacement

Condition field: 0010 =high 1001 =overflow set
0011 =low or same 1010= plus
0100 =carry clear 1011 =minus
0101 =carry set 1100 =greater or equal
011 O = not equal 1101 = less than
0111 =equal 1110 =greater than
1000 =overflow clear 1111 =less or equal

15 14 13 12 11 10 9 8 6 5 4 3 2

0 0 0 0 0 0 8-Bit Displacement

15 14 13 12 11 10 9 8 6 5 4 3 2

0 0 0 0 0 8-Bit Displacement

179

0

0

0

MOVEQ

OR

DIVU

SBCD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I I I I
Data

Register
Data

Data field : Data is sign extended to a long operand and all 32 bits are
transferred to the data register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Data Effective Address
1 0 Register Op-Mode

1 Mode Register

Op-Mode field: Byte Word Long Operation
000 001 010 (< Dn>)v(<ea>)-Dn
100 101 110 (<ea>)v(< Dn>)-ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 0 0 0 1 1 l Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 Destination
Register*

0 0

R/M field : 0 =data register to data register
1 = memory to memory

*If R/M = 0, specifies a data register.

0 0 R/M Source
Register*

If R/M = 1, specifies an address register for the predecrement addressing
mode.

180

DIVS

SUB

SUBA

SUBX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 Data Effective Address
1 1 1 1 l Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 0 1 Op-Mode l Register Mode Register

Op-Mode field: Byte Word Long Operation
000 001 010 (<Dn>)-(<ea>) -On
100 101 110 (<ea>)-(<Dn>) -ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 0 1 Op-Mode l Register Mode Register

Op-Mode field: Word Long
011 111

Operation
(<ea>)-(<An>) -An

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Destination
Register*

Size field: 00 =byte
01 =word
10 =long

Size

R/M field: 0 =data register to data register
1 = memory to memory

*If R/M = 0, specifies a data register.

0 0 R/M Source
Register*

If R/M = 1, specifies an address register for the predecrement addressing
mode.

181

CMP

CMPA

EOR

CMPM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address.
1 0 1 1 Op-Mode t Reg ister Mode Register

Op-Mode field: Byte Word Long Operation
000 001 010 (< Dn >)-(< ea>)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 1 1

Op-Mode field :

Effective Address Data Op-Mode 1 Register Mode Register

Word Long
011 111

Operation
(< ea >)-(< An>)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 1 1 Op-Mode 1 Register Mode Register

Op-Mode field: Byte Word Long Operation
100 101 110 (< ea >)Ell(< Dn >)-ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 Destination
Register

Size field : 00 = byte
01 =word
10 =long

182

Size 0 0 Source
Register

AND

MULU

ABCD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address Data 1 1 0 0 Op-Mode l Register Mode Register

Op-Mode field : Byte Word Long
000 001 010
100 101 110

Operation
(<Dn>)A(<ea>) -On
(<ea>)A(<Dn>) -ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 1 0 0 0 1 1 l Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Destination
Register*

0 0

R/M field: 0 =data register to data register
1 = memory to memory

*If RIM= 0, specifies a data register.

0 0 R/M Source
Register*

If R/M = 1, specifies an address register for the predecrement addressing
mode.

EXG Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0

EXG Address Registers

Data
Register

0 0 0 0 Data
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Address
Register

183

0 0 0 Address
Register

EXG Data Register and Address Register

MULS

ADD

ADDA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Data
Register

0 0 0 Address
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 1 0 0 1 1 1 l Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 1 0 1 Op-Mode

1 Register Mode Register
Op-Mode field: Byte Word Long Operation

000 001 010 (<Dn>)+(<ea>)-Dn
100 101 110 (<ea>)+(<Dn>) -ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 1

Op-Mode field:

Effective Address Data Op-Mode l Register Mode Register

Word Long
011 111

184

Operation
(<ea>)+(<An>) -An

ADDX
15 14 13 12 11 10 9 8 6 5 4 3 2 0

0 Destination
Register*

Size field: 00 =byte
01 =word
10 =long

Size

R/M field: 0 =data register to data register
1 = memory to memory

*If R/M = 0, specifies a data register.

0 0 R/M Source
Register*

If R/M = 1, specifies an address register for the predecrement addressing
mode.

SHIFT/ROTATE - Register

15 14 13 12 11 10 9 8 6 5 4 3 2

0 Count/
Register

dr Size i/r Type

Count/Register field: If i/r field= 0, specifies shift count

0

Data
Register

If i/r field= 1, specifies a data register that contains the
shift count

dr field: 0 =right
1 =left

Size field: 00 =byte
01 =word
10 =long

i/r field: 0 =immediate shift count
1 =register shift count

Type field: 00 =arithmetic shift
01 =logical shift
10 =rotate with extend
11 =rotate

SHIFT/ROTATE - Memory

15 14 13 12 11 10 9 8

1 1 1 0 0 Type

Type field: 00 =arithmetic shift
01 =logical shift

dr

10 =rotate with extend
11 = rotate

dr field: 0 =right
1 =left

185

6 5 4 3 2 0

1 1 Effective Address

Mode 1 Register

APPENDIX D
MC68000 INSTRUCTION EXECUTION TIMES

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external

clock (CLK) periods. In this data, it is assumed that both m~mory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait

states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the

timing data. This data is enclosed in parenthesis following the number of clock periods

and is shown as: (r/w) where r is the number of read cycles and w is the number of write

cycles included in the clock period number. Recalling that either a read or write cycle re·

quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for

the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required

for some internal function of the processor.

NOTE

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMING

Table D-1 lists the number of clock periods required to compute an instruction's effective

address. It includes fetching of any extension words, the address computation, and

fetching of the memory operand. The number of bus read and write cycles is shown in

parenthesis as (r/w). Note there are no write cycles involved in processing the effective

address.

Table D·1. Effective Address Calculation Times

Addressing Mode Byte, Word Long

Register
Dn Data Register Direct 010/01 010/01

An Address Regis ter Direct 010/ 01 010/ 01

Memory

IAnl Add ress Register Indirect 411 / 0I 812/0I

IAnl+ Address Register Indirect with Postincrement 411 / 01 812/01

-IAnl Address Register Indirect with Predecrement 611 / 01 1012/ 01

dlAnl Address Register Indirect with Displacemen t 812/ 01 1213/ 01

di An, ix)* Address Register Indirect with Index 1012/0I 1413/0I

xxx .W Absolu te Short 812/ 01 1213/01

xxx. L Absolute Long 1213/ 01 1614/ 01

dlPCI Program Counter with Displacement 812/01 1213/01

dlPC, ixl* Program Coun ter with Index 1012/01 1413/01

#xxx Immediate 411 / 0I 812/ 01

*The size of the index register lixl does not affect execution time.

187

0.3 MOVE INSTRUCTION EXECUTION TIMES

Tables D-2 and 0-3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (r/w).

Table 0·2. Move Byte and Word Instruction Execution Times

Source Destination
On An (An) (An) + - (An) d(Anl d(An, ix)* xxx .W xxx. L

Dn 4(1/01 4(1 / 0I 8(1/11 8(1 / 11 8(1/ 11 12(2/11 14(2/11 12(2 / 11 1613111
An 4(1 /0I 4(1 / 01 8(1 / 11 8(1 /1 1 8(1/ 11 12(2 / 11 1412111 12(2 / ll 16(3/ 11
(Anl 8(2 /01 8!2 / 01 12(2/ 11 12(2 /1 1 12(2 / ll 16(3/ 11 18(3/ 11 16(3/11 20(4/11

!Anl+ 8(2 /01 8(2 / 0I 12(2 / 11 12(2/1 1 12(2 / 11 16(3111 18(3/11 16(3/ 11 20(4/ 11
- (Anl 10(2 /01 10(2 / 01 14(2 / 11 14(2/1 1 14(2/11 18(3/1) 20(3/ 11 18(3/11 22(4 / 11
d(Anl 12(3 / 0I 12(3/01 16(3/11 16(3/11 1613111 2014111 2214/11 2014/ 11 2415/ 11
dlAn. ixl* 1413/0I 1413/ 01 1813/ 11 1813111 1813/ 11 2214/11 2414/11 2214111 2615111
xxx .W 1213/01 1213/01 1613111 1613111 1613/ 11 2014/ 11 2214111 2014/ 11 24(5/ 11
xxx . L 1614/01 16(4/01 20(4/11 20(4/11 20(4/ 11 24(5/11 26(5/11 24(5/11 28(6/11

d(PCI 1213/0I 1213/01 1613/ 11 16(3/ 11 16(3/ 11 20(4/11 2214/ll 2014/ 11 2415111
dlPC. ixl* 1413/01 1413/01 1813111 1813/11 1813/11 2214/11 2414/ 11 22(4/ 11 26(5/ 11
#xxx 8(2/01 8(2/01 12(2/11 12(2/11 12(2/11 16(3/11 18(3/11 16(3/11 20(4/11

*The size of the index regis ter (ixl does not affec t execution time.

Table 0-3. Move Long Instruction Execution Times

Source
Destination

On An (Anl (An) + -(An) d(Anl d(An, ix)* xxx .W xxx .L

Dn 4(1/01 4(1 /0I 12(1/21 12(1/21 12(1/21 16(2/21 18(2 / 21 16(2 / 21 20(3/21
An 4(1/01 4(1/01 1211 / 21 12(1/21 12(1 / 21 16(2/21 18(2/ 21 16(2 / 21 20(3/21
(Anl 12(3/0I 12(3/0I 20(3/ 21 20(3/21 20(3/ 21 24(4 / 21 26(4/2) 2414/ 21 28(5/ 21

(An)+ 12(3/0I 12(3/0I 20(3 / 21 20(3/ 21 20(3/ 21 24 (4/ 2) 26(4 / 21 2414/ 21 28(5/ 21
- (Anl 14(3/01 14(3/0I 22(3/ 2) 22(3/ 21 22(3/ 21 26(4 / 21 28(4/ 21 26(4 / 21 30(5/ 21
d(Anl 16(4/0I 16(4 / 0I 24(4/ 21 24(4/ 21 24(4 / 21 28(5/ 21 3015/ 21 28(5/ 21 32(6/ 2)

d(An , ixl* 18(4/0I 18(4 / 0I 26(4 / 21 26(4 / 2) 26(4 / 2) 30(5/ 2) 32(5/ 2) 30(5/ 21 34(6/ 2)
xxx .W 16(4/0I 16(4/0I 24(4 / 21 24(4 / 21 24(4 / 2) 28(5/ 21 30(5 / 21 28(5/ 2) 32(6/ 21
xxx .L 20(5/01 20(5/0I 28(5/ 21 28(5/ 21 28(5/ 2) 32(6/ 2) 34(6/ 2) 32(6/ 2) 36(7 / 21
d!PCI 16(4/0I 16(4 / 0I 24(4 / 2) 24(4/ 2) 24(4/ 21 28(5 / 2) 30(5/ 21 28(5/ 21 32(5/ 21
d!PC, ixl* 18(4/01 18(4/ 0I 26(4/ 21 26(4 / 21 26(4 / 21 30(5/ 21 32(5 / 21 30(5/ 21 34(6/ 21
#xxx 12(3/01 12(3/01 20(3/ 21 20(3/21 2013/ 21 24(4 / 21 26(4 / 21 24(4 / 21 28(5/ 21

* The size of the index register (ix) does not affect execution time .

188

D.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-4 indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad·
dress calculation where indicated.

In Table D·4 the headings have the following meanings: An= address register operand,
Dn =data register operand, ea= an operand specified by an effective address, and
M =memory effective address operand.

Table D·4. Standard Instruction Execution Times

Instruction Size op< ea >, Ant

Byte, Word 811/01 +
ADD

Long 611/ 01 + * *
Byte, Word -

AND
Long -

Byte, Word 611 /01 +
CMP

Long 611 /01+

DIVS - -
DIVU - -

Byte, Word -
EOR

Long -
MULS - -
MULU - -

Byte, Word -
OR

Long -
Byte, Word 811 /01 +

SUB
Long 611/01 + * *

NOTES:
+ add effective address calculation time
t word or long only
* indicates maximum value

op< ea > , On op On, < M>
411/ 01+ 811/11+

611 / 01+** 1211 / 21+

411/01 + 811 /11 +

611 /01 + * * 1211 / 21+

411 / 01+ -
611/ 01+ -

15811/ 01 + * -
14011/01 + . -

411 /01 * * * 811 111+

811/01* * * 1211/ 21+

7011 / 01 + * -
7011/0I+ * -
411/0I+ 811 /11 +

611 / 01 + * * 1211/21+

411/ 01+ 811/11+

611 /0I + * * 1211 / 21 +

* • The base time of six clock periods is increased to eight if the effective address mode is
register direct or immediate I effective address time should also be added I .

* * * Only available effective address mode is data register direct.
DIVS, DIVU - The divide algorithm used by the MC68000 provides less than 10% difference

between the best and worst case timings.
MULS, MULU - The multiply algorithm requires 38+ 2n clocks where n is defined as:

MULU: n = the number of ones in the <ea>
MULS : n = concatanate the <ea> with a zero as the LSB; n is the resultant number of

10 or 01 patterns in the 17-bit source; i.e., worst case happens when the
source is $5555.

189

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table D-5, the headings have the following meanings: #=immediate operand,
Dn =data register operand, An= address register operand, and M =memory operand.
SR= status register.

Table 0·5. Immediate Instruction Execution Times

Instruction Size op#, Dn

ADD I
Byte, Word 812/ 01

Long 1613/ 01

ADDO
Byte, Word 411/ 01

Long 811/ 01

ANDI
Byte, Word 812 / 01

Long 1613/ 01

CMPI
Byte, Word 812/ 01

Long 1413/ 01

EORI
Byte, Word 812/ 01

Long 1613/ 01

MOVEO Long 411/ 01

OR I
Byte, Word 812/ 01

Long 1613/ 01

SUBI
Byte, Word 812/ 0I

Long 1613/ 0I

SUBO
Byte, Word 411 / 01

Lo~g 811 / 01

+ add effect ive address ca lcu lation time
* word only

190

op#, An op#, M

- 1212/ 11+

- 2013/ 21 +

811/ 0I * 811 /1 1+

811 / 01 1211 / 21 +

- 1212/11 +

- 2013/ 11 +

- 812/ 01+

- 1213/ 01 +

- 1212/ 11 +

- 2013/ 21 +

- -

- 1212/ 11 +

- 2013/ 21 +

- 1212/11 +

- 2013121 +

811 / 01 * 811/11 +

811 / OI 1211/21 +

D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table D-6 indicates the number of clock periods for the single operand instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effect ive address calculation where indicated.

Table D-6. Single Operand Instruction Execution Times

Instruction Size Register Memory

CLR
Byte, Word 411/01 811/11 +

Long 611/01 1211/21 +

NBCD Byte 611 /OI 811/11 +

Byte, Word 411/01 811/11 +
NEG

611/01 1211/21+ Long

Byte, Word 411/01 811/1 1+
NEGX

Long 611/01 1211/21+

Byte, Word 411/0I 811/11 +
NOT

Long 611/01 1211 / 21 +

Byte, False 411 / 0I 811/11 +
sec

Byte, True 611 /OI 811 / 11 +

TAS Byte 411 /OI 1011/ 11+

Byte, Word 411/ 01 411 /01+
TST

411 / 01 411 /01 + Long

+add effective address calcu lation time

D.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table D-7 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D-7. Shift/Rotate Instruction Execution Times

Instruction Size

Byte, Word
ASR, ASL

Long

Byte, Word
LSR , LSL

Long

Byte, Word
ROR, ROL

Long

Byte, Word
ROX R, ROXL

Long

+ add effective address calculation time
n is the shift count

Register Memory

6 + 2n l1/ 0I 811/11 +

8 + 2nl1 / 0I -
6 + 2nl1 / 0I 811111+

8 + 2nl1 / 01 -

6 + 2nl 1/ 0I 811/11+

8 + 2nl 1/ 0I -

6 + 2n l1/01 811/11 +

8 + 2n l1 / 0I -

191

D.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table D-8 indicates the number of clock periods required for the bit manipulation instruc
tions. The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods and the number of read and write cycles must be added respec
tively to those of the effective address calculation where indicated.

Table D·8. Bit Manipulation Instruction Execution Times

Instruction Size
Dynamic

Register

Byte -
BCHG

811/0i * Long

Byte -
BCLR

Long 1011/ 0i*

Byte -
BSET

811 / 0i * Long

Byte -
BTST

Long 611 / 01

+ add effective address calculation time
* indicates maximum va lue

Memory

811/11+

-
811/11+

-

811 / 11+

-
411 / 01+

-

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Static

Register Memory

- 1212/11 +

1212/ 01* -

- 1212/11 +

1412/01* -

- 1212111 +

1212/ 0I* -
- 812/ 01 +

1012/ 01 -

Table D-9 indicates the number of clock periods required for the conditional instructions.
The number of bus read and write cycles is indicated in parenthesis as (r/w). The number
of clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D·9. Conditional Instruction Execution Times

Instruction Displacement

Bee
Byte

Word

BRA
Byte

Word

BSR
Byte

Word

DB cc CC true

CC false

+add effective address calculation time
*indicates maximum va lue

192

Branch Branch
Taken Not Taken

1012/0i 811 / 01

1012/ 01 1212/0i

1012/ 01 -

1012/ 0) -
1812/ 21 -
1812/ 21 -

- 1212/ 01

1012/ 01 1413/ 0i

D.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table D-10 indicates the number of clock periods required for the jump, jump-to
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

Table 0·10. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr Size (An) IAnl + -IAnl di An) dl An, ix) + xxx. W xxx. L dlPCI dlPC, ixl *
JM P - 812/01 - - 1012/01 1413/0I 1012/01 1213/01 1012/01 1413/0I
JS R - 1612/21 - - 1812/21 2212 / 21 1812/ 21 2013/ 21 1812/ 21 2212/21
LEA - 411/ 0I - - 812/01 1212/0) 812/ 0I 1213/0) 812/0I 1212/ 0I
PEA - 1211/2) - - 1612/21 2012/ 21 1612/21 2013/21 1612/21 2012/ 2)

Word 12 + 4n 12 + 4n - 16 + 4n 18 + 4n 16 + 4n 20 + 4n 16 + 4n 18 + 4n
MOVEM 13+ n/Ol 13+ n/OI 14+ n/01 14+ n/OI 14 + n/OI 15+ n/ OI 14 + n/ OI 14+ n/ 01
M - R Long 12 + 8n 12 + 8n - 16 + 8n 18 + 8n 16 + 8n 20 + 8n 16 + 8n 18 + 8n

13+ 2n/ OI 13+ 2n/ 0) 14 + 2n/OI 14 + 2n/OI 14+ 2n/OI 15+ 2n/ 0) 14 + 2n/ Ol 14 + 2n/ 0)
Word 8 + 4n - 8 + 4n 12 + 4n 14 + 4n 12 + 4n 16 + 4n - -

MOVEM 12/ nl 12/ nl 13/ n) 13/ n) 13/ nl 14 / nl - -
R- M Long 8 + 8n - 8 + 8n 12 + 8n 14 + 8n 12 + 8n 16 + 8n - -

12/2nl - 12/ 2n) 13/ 2nl 13/ 2nl 13/ 2nl 14/ 2nl - -
n is the number of registers to move
* is the size of the index register (ix) does not affect the instruction's execution time

D 11 MULTl·PRECISION INSTRUCTION EXECUTION TIMES

Table D-11 indicates the number of clock periods for the multi-precision instructions. The
number of clock periods includes the time to fetch both operands, peform the operations,
store the results, and read the next instructions. The number of read and write cycles is
shown ii · parenthesis as (r/w).

In Table D-11, the headings have the following meanings: Dn =data register operand and
M =memory operand.

Table D-11. Multl·Preclslon Instruction Execution Times

Instruction Size op On, On op M, M

AOOX
Byte. Word 411/ 01 1813/1)

Long 811/ 0I 3015/ 2)

CMPM
Byte, Word - 1213/01

Long - 2015/01

SUBX
Byte, Word 411/ 01 1813/1)

Long 811/ 0I 3015/ 2)
A BCD Byte 611 IOI 1813/11
SBCD Byte 611 IOI 1813/11

193

0.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables D-12 and D-13 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles is shown in paren
thesis as (r/w). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where indicated.

Table 0·12. Miscellaneous Instruction Execution Times

Instruction Size Register Memory

AND I to CCR Byte 2013/01 -
ANDI to SR Word 2013/01 -
CHK - 1011 / 01+ -
EORI to CCR Byte 2013/ 01 -

EORI to SR Word 2013/ 01 -

ORI to CCR Byte 2013/ 01 -

ORI to SR Word 2013/01 -

MOVE from SR - 611 / 01 811 / 11 +
MOVE to CCR - 1212/ 01 1212/01+
MOVE to SR - 1212/ 01 1212/01+

EXG - 611 /01 -

EXT
Word 411 /01 -

Long 411/01 -

LINK - 1612/21 -
MOVE from USP - 411 / 01 -
MOVE to USP - 411 / 01 -
NOP - 411 / 01 -
RESET - 13211 / 01 -

RTE - 2015/01 -
RTR - 2015/01 -
ATS - 1614/ 01 -
STOP - 410/ 01 -
SWAP - 411 / 01 -
TRAPV - 411/01 -
UNLK - 1213/01 -

+add effective address calcu lat ion time

Table 0·13. Move Peripheral Instruction Execution Times

Instruct ion Size Register- Memory Memory- Register

Word 1612/ 21 1614/ 01
MOVEP

Long 2412/ 41 2416/ 01

194

D.13 EXCEPTION PROCESSING EXECUTION TIMES

Table D-14 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the
first two instruction words of the handler routine. The number of bus read and write
cycles is shown in parenthesis as (r/w).

Table 0·14. Exception Processing Execution Times

Exception Periods

Address Error 5014171

Bus Error 5014171

CHK Instruction 4415/ 41 +

Divide by Zero 4215/ 4)

Illegal Instruction 3414 / 3)

Interrupt 4415/ 31 *

Privilege Violation 3414/ 31

RESET** 4016/ 0I

Trace 3414 / 31

TRAP Instruction 3814 / 41

TRAPV Instruction 3414 / 31
+add effective address calculat ion time
•The in terrupt acknowledge cycle is assumed

to take fou r clock periods.
•*Indica tes the time from when RESET and

HALT are fi rst sampled as nega ted to w hen
instruction execution sta rts .

195

APPENDIX E
MC68008 INSTRUCTION EXECUTION TIMES

E.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait
states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/w) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle re·
quires four clock periods, a timing number giv13n as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE
The number of periods includes instruction fetch and all applicable operand
fetches and stores.

E.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table E-1 lists the number of clock periods required to compute an instruction's effective
address. It includes fetching of any extension words, the address computation, a11d
fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesis as (r/w). Note there are no write cycles involved in processing the effective
address.

Table E·1. Effective Address Calculation Times

Addressing Mode Byte Word Long

Register

On Data Register Direct 010/ 01 010/0I 010/ 0I

An Address Register Direct 010/01 010/0I OI0/ 01

Memory

IAnl Address Register Indirect 411/01 81 2/01 1614/01

IAnl+ Address Register Indirect with Postincrement 411/01 81 2/01 1614/0I

-IAnl Address Register Indirect with Predecrement 611/01 1012/0) 1814/01

dlAnl Address Register Indirect with Displacement 1213/01 1614/01 2416/0I

dlAn, ix) * Address Register Indirect with Index 1413/ 0I 1814/0I 2616/ 01

xxx.·v·v Absolute Short 1213/0I 1614/ 01 2416/ 01

xxx.L Absolute Long 2015/ 0I 2416/ 01 3218/ 01

dlPCl Program Counter wi th Displacement 1213/01 1614/01 2416/ 0I

dlPC, ixl Program Counter wi th Index 1413/01 1814/0) 2616/ 0I

l xxx Immediate 812/01 812/0) 1614/ 01

*The size of the index register lixl does not affect execution time.

197

E.3 MOVE INSTRUCTION EXECUTION TIMES

Tables E-2, E-3, and E-4 indicate the number of clock periods for the move instruction.
This data includes instruction fetch , operand reads, and operand writes. The number of
bus read and write cycles is shown in parenthesis as: (r/w).

Table E·2. Move Byte Instruction Execution Times

Destination

Source On An (An) (An) + -(An) d(An) d(An, x) * xxx.W xxx. L

On 812/ 01 812/0I 1212111 1212/ 1) 12(2/ 1) 201411 1 2214111 2014/1) 2816111

An 812/ 01 8(2/0I 121211 1 1212/1) 1212/ 1) 2014/ 1) 2214111 2014111 2816/ 1)

IAnl 12(3/ 01 12(3/ 01 16(3/1 1 1613/ 1) 16(3/1 1 24(5/ 11 26(5/11 2415111 3217/ 11

(Anl+ 12(3/ 01 12(3/0I 16(3/ 1) 16(3/ 1) 16(3/1 1 241511 1 26(5/11 2415/ 1) 32(7/ 11

-(Anl 14(3/ 01 14(3/0I 18(3/ 1) 18(3/ 1) 18(3 /11 261511 1 28(5/ 1) 26(5/ 1) 34(7/ 11

d(Anl 2015/ 01 20(5/0I 24(5/11 2415/ 1) 24(5/11 321711 1 3417 / 1) 32(7/ 11 40(9/ 11

d(An, ix) * 2215/ 0I 22(5/0I 26(5/11 26(5/11 2615/ 11 34(7/ 11 36(7111 3417/ 11 42(9/ 11

xxx .W 2015/01 2015/ 01 2415111 2415/ 1) 2415111 3217111 3417 / 1) 3217/ 11 4019111

xxx. L 2817/01 2817/01 3217111 3217111 3217111 4019/11 4219111 40(9/11 48111111

dl PCI 2015/01 2015/0I 2415111 2415/ 1) 2415111 3217/ 11 3417111 3217111 4019/ 11

dlPC, ixl* 2215/01 2215/0I 2615/ 11 2615111 2615111 3417/ 11 3617/ 11 3417 / 1) 4219111

#xxx 1614/ 01 1614/ 01 20(4/11 2014111 2014/ 11 2816/ 11 3016/ 1) 28(6/ 11 3618/ 11

*The size of the index regis ter lixl does not affect execution time.

Table E-3. Move Word Instruction Execution Times

Destination

Source On An (An) (An) + - !An) di An) d(An, ix)* xxx. W xxx .L

On 812/ 0I 812/ 01 1612/ 21 1612/ 21 1612/ 21 2414/ 21 2614/ 21 2014/ 21 3216/ 21

An 812/01 812/ 01 1612/ 21 1612/ 21 1612/ 21 2414/ 21 2614/ 21 2014/ 21 3216/ 21

IAnl 1614/0I 1614/ 01 2414/ 21 2414/ 21 2414/ 21 3216/ 21 3416/21 3216/21 4018/21

IAnl+ 1614/01 1614/0I 2414/ 21 2414/ 21 2414/ 21 3216/ 21 3416/ 21 3216/21 4018/ 21

- IAnl 1814/ 01 1814/ 01 2614/ 21 2614/ 21 2614/ 21 3416/ 21 3216/ 21 3416/ 21 4218/ 21

dlAnl 2416/ 01 2416/ 01 3216/ 21 3216/ 21 3216/ 21 4018/ 21 4218/ 21 4018/ 21 48110/ 21

d(An, ixl* 2616/ 01 2616/ 01 3416/ 21 3416/ 21 3416/ 21 4218/ 21 4418/ 21 4218/ 21 50110/ 21

xxx .W 2416/ 0I 2416/ 01 3216/ 21 3216/ 21 3216/ 21 4018/ 21 4218/ 21 4018/ 21 48110/ 21

xxx .L 3218/ 0I 3218/ 01 4018/ 21 40(8/ 21 4018/ 21 48110/21 50110/ 21 48110/ 21 56(12/ 21

dlPCI 24(6/ 01 2416/0) 3216/ 21 32(6/ 21 3216/ 2) 4018/ 21 4218/ 21 4018/ 21 48110/ 21

di PC, ixl * 2616/ 01 2616/0I 3416/ 21 34(6/ 21 3416/ 21 4218/ 21 4418/ 21 4218/ 2) 50110/ 21

#xxx 16(4/0I 1614/0) 24(4/ 2) 2414/ 21 2414/ 2) 3216/21 3416/ 2) 3216/ 2) 4018/ 2)

*The size of the index regis ter lixl does not affect execution time.

198

Table E·4. Move Long Instruction Execution Times

Destination

Source On An (An) (An) + -(An) d(Anl d(An, ix) * xxx.W xxx. L

On 812/01 812/01 2412/4) 2412/4) 2412/41 3214/41 3414/41 3214/41 4016/41

An 812/0I 812/01 2412/41 2412/41 2412/4) 3214/4) 3414/41 3214/41 4016/41

IAnl 241q/OI 2416/0I 4016/41 4016/41 4016/41 4818/41 5018/41 4818/41 56110/41

IAnl+ 2416/01 2416/01 4016/41 4016/41 4016/41 4818/41 5018/41 4818/41 56110/41

-IAnl 2616/01 2616/01 4216/41 4216/41 4216/41 5018/41 5218/41 5018/41 58110/41

dlAnl 3218/0I 3218/01 4818/41 4818/41 4818/41 56110/4) 58110/41 56110/41 64112/41

di An, ix) • 3418/01 3418/01 5018/41 5018/4) 5018/41 58110/41 60110/41 581 10/41 66112/41

xxx.W 3218/01 3218/0I 4818/41 4818/41 4818/41 56110/41 58110/41 56110/41 64112/41

xxx. L 40110/0I 4011 0/0I 56110/41 56110/41 56110/41 64112/41 66112/41 64112/41 72114/41

dlPCI 3218/01 3218/01 4818/41 4818/41 4818/41 56110/41 58110/41 56110/41 64112/41

dlPC, ixl * 3418/01 3418/01 5018/41 5018/41 5018/41 58110/4) 60110/41 58110/41 66112/41

#xxx 2416/0I 2416/0I 4016/41 4016/41 4016/41 4818/4) 5018/4) 4818/41 56110/41

•The size of ·the index register l ixl does not affect execu tion time.

E.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E·5 indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as: (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad
dress calculation where indicated. In Table E·5 the headings have the following mean
ings: An= address register operand, Dn =data register operand, ea= an operand
specified by an effective address, and M =memory effective address operand .

Instruction Size

Byte
ADD Word

Long

Byte
AND Word

Long

Byte
CMP Word

Long

DIVS

DIVU

Byte
EOR Word

Long

MULS

MULU

Byte
OR Word

Long

Byte
SUB Word

Long

Table E·5. Standard Instruction Execution Times

op < ea>, An op < ea > , Dn

- 812/01+
1212/01+ 812/01 +
1012/0I + •• 1012/01 + ••

- 812/01+
- 812/0I +
- 1012/0I + • •

- 812/01 +
1012/01 + 812/0I +
1012/0) + 1012/0I +

- 16212/0I +.

- 14412/0I +.

- 812/0I + •• •
- 81 2/0I + • • •
- 1212/01 + •••

- 741 2/0I +.

- 7412/01 + .

- 812/ 01 +
- 812/01 +
- 1012/01 + ••

- 812/01+
1212 / 01 + 812/0I +
1012/01 + • • 1012/0I + • •

op On, < M>
1212111 +
1612/21+
2412/41 +

1212111+
1612/21 +
2412/4) +

-
-

-
-
-

1212/ 11 +
1612/2) +
2412/4) +

-

-

1212111 +
1612/21 +
2412/ 41 +

1212/11 +
1612/21 +
2412/ 41 +

199

NOTES:

+ Add effective address calculation time
Indicates maximum val ue
The base time of 10 clock periods is in
creased to 12 if the effective address
mode is register direct or immediate
(effective address time shou ld also be
added I .
Only avai lable effective address mode is
data register direct

DI VS, DI VU - The divide algori thm used by the
MC6800B provides less than 10%
difference between the best and
wo rst case timings.

MU LS, MULU - The mu ltiply algorithm requires
42 + 2n clocks where n is
defi ned as:
MU LS: n=tag the <ea> with
a zero as the MSB; n is the
resultant number of 10 or 01
patterns in the 17-bit sou rce,
i.e., worst case happens when
the source is $5555.
MU LU: n =the number of ones
in the <ea>

E.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E-6 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as: (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated. In Table E-6, the headings
have the following meanings: #=immediate operand, Dn =data register operand,
An= address register operand, and M =memory operand.

Table E-6. Immediate Instruction Clock Periods

Instruction Size op#, Dn op#,An op#, M

Byte 1614/01 - 2014/11 +
ADDI Word 1614/01 - 2414/21 +

Long 2816/01 - 4016/41 +

Byte 812/01 - 1212/11 +
ADDO Word 812/01 1212/0I 1612/21 +

Long 1212/0I 1212/0I 2412/41 +

Byte 1614/0I - 2014/11 +
ANDI Word 1614/01 - 2414/21 +

Long 2816/01 - 4016/41 +

Byte 1614/0I - 1614/0I +
CMPI Word 1614/0I - 1614/01 +

Long 261 6/01 - 2416/01 +

Byte 1614/01 - 2014/ 11 +
EORI Word 1614/0I - 2414/21 +

Long 2816/0I - 4016/41 +

MOVEO Long 81 2/0I - -
Byte 1614/01 - 2014/11 +

ORI Word 1614/0I - 2414/21 +
Long 2816/0I - 4016/41 +

Byte 1614/0I - 121211 1 +
SUBI Word 1614/0I - 1612/21 +

Long 281 6/01 - 2412/41 +

Byte 81 2/0I - 2014111 +
SUBO Word 81 2/01 1212/0I 2414/21 +

Long 1212/01 1212/01 4016/41 +

+ add effect ive address ca lculation time

200

E.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table E-7 indicates the number of clock periods for the single operand instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table E-7. Single Operand Instruction Execution Times

Instruction Size Register Memory

Byte 812/ 01 1212111 +
CLR Word 812/ 01 1612/21 +

Long 1012/ 01 2412/41 +

NBCD Byte 1012/ 0I 1212/ 11 +

Byte 812/ 0I 1212/ 11 +
NEG Word 812/ 01 1612/ 21+

Long 1012/ 01 2412/ 41 +

Byte 812/0I 1212/11 +
NEGX Word 812/0I 1612/ 21+

Long 1012/ 01 2412/41 +

Byte 812/01 1212/ 11 +
NOT Word 812/01 1612/21 +

Long 1012/ 01 2412/41 +

sec Byte, False 812/ 0I 1212111 +
Byte, True 1012/ 01 1212111 +

TAS Byte 812/ 01 1412/ 11 +

Byte 812/ 01 812/ 0I +
TST Word 812/ 0I 812/ 01+

Long 812/ 01 812/ 01 +

+add effective address calculation time.

E.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table E-8 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as: (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table E-8. Shift/Rotate Instruction Clock Periods

Instruction Size

Byte
ASR, ASL Word

Long

Byte
LSR, LSL Word

Long

Byte
ROR, ROL Word

Long

Byte
ROXR, ROXL Word

Long

+add effective address ca lculation time
n is the shift count

Register Memory

10 + 2n l2/0I -
10 + 2nl2/0I 1612/21+
12 + 2n l2/0I -

10 + 2n l2/0I -
10 + 2nl2/0I 1612/21 +
12 + 2nl2/0I -
10 + 2nl2/ 01 -
10 + 2nl2/ 0I 1612/ 21 +
12 + 2nl2/ 0I -
10 + 2nl2/0I -

10 + 2nl2/ 0I 1612/21 +
12 + 2nl2/ 0I -

20:1

E.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table E-9 indicates the number of clock periods required for the bit manipulation instruc·
tions. The number of bus read and write cycles is shown in parenthesis as: (r/w). The
number of clock periods and the number of read and write cycles must be added respec·
tively to those of the effective address calculation where indicated.

Table E·9. Bit Manipulation Instruction Execution Times

Instruction Size

BCHG
Byte
Long

BCLR
Byte
Long

BSET
Byte
Long

BTST
Byte
Long

+add effective address calcu lat ion time
*indicates maximum value

Dynamic

Register Memory

- 1212111 +
1212/ 01* -

- 121211 1 +
1412/ 01 * -

- 1212111 +
1212/01* -

- 812/01 +
1012/01 -

E.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Static

Register Memory

- 2014/11 +
2014/ 01* -

- 2014/ 1) +
2214/ 01* -

- 2014111 +
2014/ 0I* -

- 1614/01+
1814/0i -

Table E-10 indicates the number of clock periods required for the conditional instruc·
tions. The number of bus read and write cycles is indicated in parenthesis as: (r/w). The
number of clock periods and the number of read and write cycles must be added respec·
tively to those of the effective address calculation where indicated.

Table E-10. Conditional Instruction Execution Times

Instruction Displacement

Bee
Byte

Word

BR A
Byte

Word

BSR
Byte

Word

DBCC
CC True
CC False

CHK -
TRAP -

TRAPV -
+add effective address calculation time
*indicates maximum value

' \

202

Trap or Branch Trap or Branch
Taken Not Taken

1814/ 0i 1212/ 01
1814/ 0i 2014/ 01

1814/ 01 -
1814/ 01 -

3414/ 41 -
3414/ 41 -

- 2014/ 01
1814/ 01 2616/ 0I

\ 6818/ 61 + * 1412/ 01 +

\ 6218/ 61 -

'66110/ 61 812/ 01

E.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table E·11 indicates the number of clock periods required for the jump, jump-to
subrout ine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as: (r/w).

Table E-11. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instruction Size !An) !An)+ -(An) d(An) d(An, ix)* xxx.W xxx. L

JMP - 16(4/Q) - - 18(4/ 0) 2214/0) 1814/Q) 241 6/0I

JSR - 3214/ 4) - - 3414/ 4) 3814/41 3414/ 41 4016/ 41

LEA - 812/01 - - 1614/0) 2014/0I 1614/0I 2416/ 0I

PEA - 2412/41 - - 3214/4) 3614/ 4) 3214/4) 4016/ 41

Word 24+8n 24+8n - 32 + 8n 34 + 8n 32+8n 40+8n
MOVEM 16+ 2n/OI 16+ 2n/0) - 18+2n/OI 18+2n/0) 110+n/OI 110+2n/OI

M - R Long 24+ 16n 24+ 16n - 32 + 16n 32 + 16n 32+ 16n 40+16n
16 + 4n/0) 16+4n/OI - 18+ 4n/OI 18+4n/0) 18 + 4n/OI 18+ 4n /0)

Word 16+8n - 16+8n 24+8n 26+8n 24 + 8n 32+8n
MOVEM (4/2nl - 14/2nl 16/2nl 16/2n) 16/2nl 18/2n)

R -M Long 16+16n - 16+16n 24+ 16n 26+ 16n 24+ 16n 32+ 16n
l4/ 4n) - 14/ 4n l 16/4nl 18/4nl 16/4nl

n is the number of registers to move
* is the size of the index register (ix) does not affect the instruction's execution time

E.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table E-12 indicates the number of clock periods for the multi-precision instructions. The
number of clock periods includes the time to fetch both operands, perform the opera
tions, store the results, and read the next instructions. The number of read and write
cycles is shown in parenthesis as: (r/w).

In Table E-12, the headings have the following meanings: On= data register operand and
M =memory operand.

Table E·12. Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn op M, M

Byte 812/0I 2214/11
ADDX Word 812/0I 5016/2)

Long 1212/0I 58110/41

Byte - 1614/0)
CM PM Word - 2416/01

Long - 40110/0I

Byte 812/01 2214/ 11
SUBX Word 812/01 5016/2)

Long 1212/01 58110/41

ABCD Byte 1012/0I 2014/1)

SBCD Byte 1012/ 0I 2014/ 1)

203

E.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables E-13 and E-14 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles is shown in paren
thesis as: (r/w). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where indicated.

Table E-13. Mlscellaneous Instruction Execution Times

Instruction Register Memory

ANDI to CCR 3216/ 0I -

AN DI to SR 3216/ 01 -

EORI to CCR 3216/ 01 -
EORI to SR 3216/ 0I -
EXG 1012/ 0I -
EXT 812/ 0I -
LINK 3214/ 41 -
MOVE to CCR 1814/0I 1814/ 01 +

MOVE to SR 1814/0I 1814/01 +

MOVE from SR 1012/01 1612/ 21 +

MOVE to USP 812/ 01 -
MOVE from USP 812/ 0I -
NOP 812/ 0I -
ORI to CCR 3216/ 01 -
ORI to SR 3216/ 01 -
RESET 13612/ 01 -
RTE 40110/ 01 -
RTR 40110/ 01 -
RTS 3218/ 01 -
STOP 410/ 01 -
SWAP 812/ 01 -
UNLK 2416/ 01 -

+ add effective address calculation time

Table E-14. Move Peripheral Instruction Execution Times

Instruction Size Register - Memory Memory - Register

MOVEP
Word 2416/ 0I 2414/ 21
Long 3214/ 41 3218/ 0I

+ add effective address calculation time

204

E.13 EXCEPTION PROCESSING EXECUTION TIMES

Table E-15 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the
first instruction of the handler routine. The number of bus read and write cycles is shown
in parenthesis as: (r/w).

Table E·15. Exception Processing Execution Times

Exception Periods

Address Error 9418/ 141

Bus Error 9418/ 141

Interrupt 7219/ 61*

Illegal Inst ruction 6218/61

Privileged Instruction 6218/61

Trace 6218/61

*The interrupt acknow ledge bus cycle is assumed to take four exter
nal clock periods.

205

APPENDIX F
MC68010 INSTRUCTION EXECUTION TIMES

F.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external

clock (CLK) periods. In this data, it is assumed that both memory read and write cycle

times are four clock periods. A longer memory cycle will cause the generation of wait

states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the

timing data. This data is enclosed in parenthesis following the number of clock periods

and is shown as: (r/w) where r is the number of read cycles and w is the number of write

cycles included in the clock period number. Recalling that either a read or write cycle re·

quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for

the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required

for some internal function of the processor.

NOTE

The number of periods includes instruction fetch and all applicable operand

fetches and stores.

F.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table F-1 lists the number of clock periods required to compute an instruction's effective

address. It includes fetching of any extension words, the address computation, and fet·

ching of the memory operand if necessary. Several instructions do not need the operand

at an effect ive address to be fetched and thus require fewer clock periods to calculate a

given effective address than the instructions that do fetch the effective address operand.

The number of bus read and write cycles is shown in parenthesis as (r/w). Note there are

no write cycles involved in processing the effective address.

Table F·1. Effective Address Calculation Times

Byte, Word Long

Addressing Mode Fetch No Fetch Fetch No Fetch

Register

Dn Data Register Direct 0!0/ 01 - 0!0/ 01 -
An Address Register Direct 0!0/ 01 - 0!0/01 -

Memory

IAnl Address Register Indirect 411 / 0I 210/ 01 812/0I 2!0/ 0I

IAnl+ Address Register Indirect with Postincrement 411/ 0I 410/ 01 812/0I 410/ 01

- IAnl Address Register Indi rect with Predecrement 611/01 410/0I 1012/0I 410/01

dlAnl Address Register Indi rect with Displacement 812/ 0I 410/ 01 1213/ 01 411 / 01

di An, ix) * Address Register Indi rect with Index 1012/ 01 811/ 01 1413/ 01 811 / 01

xxx .W Absolu te Short 812/01 411/01 1213/ 01 411/0I

xxx.L Absolute Long 1213/ 01 812/ 01 1614/ 01 812/ 01

dl PCI Program Counter wi th Displacement 812/ 01 - 1213/ 01 -

dlPC, ixl Program Counter with Index 1012/01 - 1413/01 -

#xxx Immediate 411 / 01 - 8(2/01 -

*The size of the index register lixl does not affect execution t ime.

207

F.3 MOVE INSTRUCTION EXECUTION TIMES

Tables F-2, F-3, F-4, and F-5 indicate the number of clock periods for the move instruc
tion . This data includes instruction fetch, operand reads, and operand writes. The
number of bus read and write cycles is shown in parenthesis as (r/w).

Table F·2. Move Byte and Word Instruction Execution Times

Source Destination
On An (An) (An) + -(An) d(An) d(An, ix)* xxx.W xxx.L

On 4(1/01 4(1/01 8(1/ 11 8(1 /11 8(1 / 11 l2(2/ 1) 14(2/ 11 12(2/11 16(3/1 1
An 4(1/01 4(1 /0I 8(1/ 1) 8(1/11 8(1/ 11 12(2/1) 1412/ 1) 1212111 1613/11
(An) 8(2 /0I 81 2/ 0I 1212/ 11 12(2/1 1 1212111 16(3/ 11 1813/ 11 1613/ 11 2014/ 11
(An)+ 812/01 8(2/0I 1212111 !212111 1212/ 11 1613/ 11 1813/1) 1613/ 11 2014111
-(An) 1012/0I 1012/01 1412/ 11 1412/ 11 1~12111 181311 1 2013/ 11 1813/11 2214/11
d(An) 1213/01 12(3/ 01 1613/ 11 1613/ 11 1613111 2014/1) 2214/ 11 2014/11 2415/ 11
d(An, ix)* 1413/ 01 1413/0I 1813/ 11 1813/ 1) 1813/ 11 2214/1) 2414/ 11 2214 / 11 2615/ 11
xxx.W 1213/0I 1213/0I 1613/ 11 1613/11 1613/ 11 2014111 2214 / 11 2014/11 2415/ 11
xxx.L 1614/01 1614 /01 2014111 2014/11 2014/11 2415/ 11 2615111 2415111 2816/ 11
d(PC) 1213/01 12(3/0I 1613111 1613/ 11 1613/1) 2014/ 11 2214/ 11 2014/1) 2415/ 11
d(PC, ixl* 1413/0I 1413/01 1813/ 11 1813/ 11 1813/ 11 2214/11 2414111 2214/ 11 2615/ 11
lxxx 812/0I 812/01 1212/ 11 121211 1 1212/ 11 1613/ 11 1813111 1613/ 11 2014/1 1

* The size of the index register lixl does not affect execution time .

Table F·3. Move Byte and Word Instruction Loop Mode Execution Times

Loop Continued Loop Terminated
Valid Count, cc False Valid Count, cc True Expired Count

Destination
Source (An) (An)+ -(An) (An) (An)+ -(An) (An) (An)+ -(An)
Dn 1010/11 1010111 - 1812/ 1) 18(2/ 11 - 1612/1) 1612/1) -
An* 1010111 1010/ 11 - 1812/1) 1812/ 1) - 1612/ 11 1612111 -
IAnl 1411 / 1) 1411/ 1) 1611/1) 2013111 2013/ 1) 221311) 1813/ 11 1813/1) 2013111
IAnl+ 1411/1) 1411/11 161111 1 2013/ 1) 2013111 221311) 1813/ 11 1813/1) 2013111
-IAnl 1611 / 1) 1611/ 1) 1811/ 1) 2213/1) 2213/ 1) 2413/ 11 2013/ 1) 2013/ 1) 2213/ 1)
* Word only.

Table F·4. Move Long Instruction Execution Times

Source Destination
On An (An) IAnl+ - (An) d(An) d(An, ixl* xxx.W xxx.L

On 411 /0) 411 / 01 1211/ 2) 1211121 14(1 / 21 1612 / 2) 1812/ 2) 1612/ 21 2013/ 2)
An 411 /0I 411 / 0I 1211/21 1211/21 1411/21 1612/21 1812/2) 1612/21 201 3/21
(An) 1213/ 01 1213/ 0I 2013/ 21 2013/ 21 2013/ 21 2414/2) 2614/ 21 2414/ 21 2815/ 2)
(An) + 1213/ 01 12(3/0I 2013/ 2) 2013121 2013/ 21 2414/21 26(4/ 2) 2414/ 21 28(5/ 21
-(An) 14(3/01 14(3/0I 22(3/ 21 2213/ 21 22(3/ 2) 2614/ 21 2814/ 21 2614/21 30(5/ 21
d(Anl 18(4/0I 18(4/ 0I 2414/21 2414/21 2414/21 2815/ 21 3015/ 21 2815/ 21 32(6/21
d(An, ix)* 1814/0I 1814/0I 26(4/ 21 2614/ 21 2814/ 2) 3015/ 21 3215/ 21 3015/ 2) 3416/ 2)
xxx.W 1814/0I 1814/01 2414/ 21 2414/21 2414/ 21 2815/ 21 3015/ 21 2815/ 21 3216/ 21
xxx .L 20(5/01 20(5/01 2815/ 21 2et5/ 21 2815/ 21 32(6/21 3416/ 21 3216/21 361 7/21
d(PC) 1814/ 0I 1814/01 24(4/ 21 2414/ 21 24(4/21 28(5/ 21 3015/21 2815/ 21 3215/ 21
d(PC, ix)* 1814/ 0I 18(4/0I 2614/ 21 2614/ 21 2614/ 21 3015/ 2) 32(5/21 3015/ 21 3416/ 2)
lxxx 12(3/ 0I 12(3/01 20(3/ 21 2013/21 20(3/ 21 2414/21 26(4/ 2) 2414/ 21 28(5/ 21

•The size of the index register l1xl does not affect execution time .

208

Table F·S. Move Long Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expired Count

Destination

Source (An) (An) + -(An) (An) (An)+ - (An) (An) (An)+ -(An)

On 14(0/ 21 14(0/21 - 20(2/ 2) 20(2/ 21 - 18(2/ 21 18(2/ 21 -
An 14(0/ 2) 14(0/ 2) - 20(2/ 21 20(2/21 - 18(2/21 18(2/ 21 -
!Anl 2212/21 2212/21 24(2/ 21 28(4/21 28(4/21 3014/21 24(4/ 21 24(4/21 28(4/21

!Anl+ 2212/21 22(2/ 21 24(2/21 28(4/ 21 28(4/ 21 30(4/ 21 24(4/ 21 24(4/21 26(4/ 21

-(Anl 24(2/2) 24(2/ 21 26(2/ 21 30(4/ 21 30(4/ 21 32(4/21 26(4/ 2) 26(4/ 21 28(4/ 21

F.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Tables F·6 and F-7 indicate the time required to

perform the operations, store the results, and read the next instruction. The number of

bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the effec·

tive address calculation where indicated.

In Tables F-6 and F-7 the headings have the following meanings: An= address register

operand, Dn =data register operand, ea= an operand specified by an effective address,
and M =memory effective address operand.

Table F-6. Standard Instruction Execution Times

Instruction Size

ADD
Byte, Word

Long

AND
Byte, Word

Long

CMP
Byte, Word

Long

DIVS -

DIVU -

EOR
Byte, Word

Long

MULS -

MULU -

OR
Byte, Word

Long

SUB
Byte, Word

Long

NOTES:
+ add effective address calculation t ime
• indicates maximum va lue

op<ea> , An* * * op<ee> , On op Dn, <M>

8(1/01+
6(1 /01+

-
-
6(1/01+
6(1/01+

-
-
-
-

-
-
-

-
8(1/01+
6(1/01+

4(1 /0I+ 8(1/ 11+
6(1/ 01 + 12(1/ 21+

4(1 / 0I+ 8(1/11+
6(1/ 01+ 12!1 /21 +

4(1 /01+ -

6(1/ 01+ -

122(1/ 0I + -

108!1/ 0I + -

4!1/ 0I* * 8(1/11+
6!1/0F 12(1/21+

42(1 /0I+ * -
40(1 /01+ -
4(1 / 01+ 8(1 / 11+
6(1/ 01+ 12(1/ 21+

4(1/01 + 8(1/11+
6(1 / 01+ 12(1 / 21 +

only available addressi ng mode is data register direct

word or long only

209

Table F·7. Standard Instruction Loop Mode Execution Times

Loop Continued Loop Terminated
Valid Count cc False Valid Count cc True Expired Count

op <ea>, op < ea> , op Dn, op <ea> , op <ea>, op Dn, op < ea >, op < ea >, op Dn,
Instruction Size An* Dn < ea> An* Dn <ea > An* Dn < ea >

Byte, Word 18(1 / 01 16(1/ 01 16(1 / 11 24(3/ 0I 22!3/ 0I 2213/11 22(3/ 01 20(3/ 01 20(3/ 11 ADD
28!4/ 0I 28(4/ 01 Long 22(2/ 01 22!2/ 0I 24(2/ 21 30(4/ 21 26(4/ 01 26!4/ 0I 28(4/ 21

Byte, Word - 16(1 / 01 16!1 /11 - 22!3/ 0I 2213111 - 20(3/ 0I 20(3/ 11 AND
28(4/ 01 Long - 22(2/ 01 24(2/ 21 - 3014/ 21 - 26!4/ 0I 28(4/ 21

Byte, W ord 12(1/ 01 12(1/ 01 - 18(3/ 01 18(3/ 01 - 16(3/ 01 16(4/ 01 -CMP
Long 18(2/ 0I 18(2 / 01 - 24(4/ 01 24(4/ 01 - 20(4/ 0I 20(4/ 01 -

Byte, Word - - 16(1/01 - - 2213/ 11 - - 20(3/ 11 EOR
Long 24(2/21 30(4/ 21 - - - - - - 2814/21

Byte, Word - 16(1 / 01 16(1 / 01 - 22(3/ 0I 2213/ 11 - 20(3/ 01 2013/11 OR
Long - 22!2/ 0I 24(2/ 21 - 28(4/ 01 30(4/ 21 - 26(4/ 01 28(4/21

Byte, W ord 18(1/ 01 1611 / 01 16(1 / 11 24(3/ 0I 22(3/ 01 2213/ 11 2213/ 01 2013/ 01 2013/ 11 SUB
2012/01 24(2/ 21 28!4/0I 2614/ 0) 30(4/21 Long 2212/ 01 2614/ 01 2414/ 01 2814/ 21

•Word or long only:
< ea > may be IAnl , +!An), or -(Anl only. Add two clock periods to the table value if <ea > is - (Anl.

F.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table F-8 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table F-8, the headings have the following meanings: #=immediate operand,
Dn =data register operand, An= address register operand, and M =memory operand.

Table F·8 Immediate Instruction Execution Times

Instruction Size op I, Dn

ADDI
Byte, Word 812/ 01

Long 14!3/ 0I

ADDO B~. Word 411 / 0J
Long 811/ 01

ANDI Byte, Word 812 / 01
Long 14(3/ 01

CMPI
Byte , Word 812/ 01
Lo~ 12!3/ 0I

EORI
Byte, Word 812 / 01

Long 14(3/ 01

MOVEO Long 411 / 01

ORI Byte, Word 812/ 01
~ong J.!!:3101

SUSI Byte, Word 812 / 0I
Long 14(3/ 0J

SUBO
Byte, Word 411/ 01

Long 811/ 01

+add effective address ca lculation time.
* word only

210

op I , An op I , M

- 121211 I+
- 20!3/ 21 +

411 / 01* 811/ 11+
811/ 01 1211 / 21 +

- 1212/11+
- 2013/11 +
- 812 / 01 +
- 1213/ 01 +
- 12(2 / 11 +
- ' 2013/ 21 +
- -
- 1212111 +
- 2013/ 21 +

- 1212/ 11 +
- 2013/ 21 +

4(1/ 01* 8! 1/ 11 +
811/ 01 1211/ 21 +

F.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Tables F-9, F-10, and F-11 indicate the number of clock periods for the single operand in

structions. The number of bus read and write cycles is shown in parenthesis as (r/w). The

number of clock periods and the number of read and write cycles must be added respec

tively to those of the effective address calculation where indicated.

Table F-9. Single Operand Instruction Execution Times

Instruction Size Register Memory

NBCD Byte 611 / QI Bll / 11 +

Byte , Word 411 /QI Bll / 11 +
NEG

Long 611/01 1211 / 21 +

Byte, Word 411 / 01 Bl l / 11+
NEGX

Long 611/01 1211/21+

Byte , Word 411 / 01 Bl l / 11 +
NOT

Long 611 / 01 1211 / 21 +

Byte , False 411/ 01 Bll/1) + .

sec Byte, True 411 / 0J Bll / 1)+ *

TAS Byte 411/01 1412/1) +.

Byte, Word 411 / OJ 411/ 01

TST Long 411 / OJ 411/ 01+

+ add effective address calculation time
* Use non- fetching effective address calculation time.

Table F-10. Clear Instruction Execution Times

Size Dn An (An) (An) + - (An) d(An) d(An, ix) * xxx.W xxx. L

l CLR
Byte, Word 411/0) - 811/1) 811/1) 1011 /1) 1212/1) 1612/1) 1212/1) 1613/ 1)

Long 611/ 0) - 1211 / 2) 1211/ 2) 1411 / 2) 1612/ 2) 2012/ 2) 1612/ 2) 2013/ 2)

*The srze of the index register l1x) does not affect execution time.

Table F-11. Single Operand Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expired Count

Instruction Size (An) (An)+ -(An) (An) (An) + -(An) (An) (An) + -(An)

CLA
Byte, Word 1010/ 1) 1010/1) 1210/1) 181211 1 1812/ 1) 2012/01 1612/1) 1612/ 1) 1812/1)

Long 1410/ 2) 1410/ 2) 16(0/ 21 2212/ 2) 2212/ 2) 2412/ 2) 2012/2) 2012/ 2) 2212/ 2)

NBCD Byte 1811/ 1) 1811/1) 2011/1) 241311) 241311) 2613/1) 2213/1) 2213/1) 2413/ 1)

NEG
Byte, Word 1611/1) 1611/1) 1812/2) 221311) 2213/1) 241311) 2013/1) 201311 l. 2213/1)

Long 2412/ 2) 2412/ 2) 26(2/ 2) 3014/ 2) 30(4/ 2) 3214/ 2) 2814/2) 2814/ 2} 3014/ 2)

NEGX
Byte, Word 1611/1) 1611 / 1) 1812/2) 2213/ 1) 2213/1) 241 311) 2013/ 1) 2013/1) 2213/ 1l

Long 2412/ 2) 2412/ 2) 2612/ 2) 3014/ 2) 3014/ 2) 3214/2) 2814/ 2) 2814/ 2) 3014/ 2)

NOT
Byte, Word 1611/1) 1611 / 1) 1812/ 21 2213/1) 2213/ 1) 2413/1) 2013/ 1) 2013/1) 2213/ 1)

Long 2412/ 2) 2412/2) 2612/ 2) 3014/ 2) 3014/ 2) 3214/ 2) 2814/ 2) 2814/ 2) 3014/ 2)

TST
Byte, Word 1211/ 0J 1211 / 0) 1411/ 0) 1813/ 0J 1813/ QI 2013/ 0) 1613/ 0J 1613/ 0J 1813/ 0)

Long 1812/ 0) 1812/0) 2012/0) 2414/0) 2414/01 2614/0) 2014/ 0J 2014/0) 2214/ 0)

211

F.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Tables F-12 and F-13 indicate the number of clock periods for the shift and rotate instruc
tions. The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods and the number of read and write cycles must be added respec
tively to those of the effective address calculation where indicated.

Instruction

ASR,AS L

LSR, LSL

ROR. ROL

ROX R, ROXL

Table F·12. Shift/Rotate Instruction Execution Times

Instruction Size

Byte, Word
ASA, ASL

Long

Byte, Word
LSR, LSL

Long

Byte, Word
ROA, AOL

Long

Byte, Word
ROXR, ROXL

Long

+add effective address calculation time
n is the shift or rotate count
*word on ly

Register Memory*

6 + 2nl1 / 0I 811/ 11 +

8 + 2nl 1/ 0I -
6 + 2nl 1/01 811 / 11 +

8 + 2nl1 /0I -
6 + 2n l 1/ 0I 811111 +

8 + 2nl1 / 01 -
6 + 2nl 1/ 0I 811/ 11 +
8 + 2n l1 / 0I -

Table F·13. Shift/Rotate Instruction Loop Mode Execution Times

Loop Continued Loop Terminated
Valid Count, cc False Valid Count, cc True Expired Count

Size (An) (An) + - (An) (An) (An)+ -(An) (Anl (Anl +
Word 1811/ 11 1811 / 11 20(1/11 2413/ 11 24(3/11 2613/ 11 22(3/ 11 22(3/11

Word 18(1 / 11 1811/11 2011 /1 1 2413/1 1 24(3/ 11 2613/11 22(3/11 2213/ 1)

Word 1811 / 11 1811/1) 2011/11 2413/11 2413/ 11 2613/ 11 2213/1) 2213/1)

Word 1811/11 1811/11 2011/ 11 2413/1) 2413/ 1) 2613111 2213/11 221311)

212

-(An)

24(3/1 1

24(3/ 1)

2413/11

2413/1)

F.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table F-14 indicates the number of clock periods required for the bit manipulation

instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

The number of clock periods and the number of read and write cycles must be added re

spectively to those of the effective address calculation where indicated.

Table F-14. Bit Manipulation Instruction Execution Times

Size
Dynamic

Instruction Register

BCHG
Byte -
Long 811 / 01*

BCLR
Byte -
Long 1011 / 0)*

BSET
Byte -
Long 811 /01*

BTST
Byte -

Long 611 / 01*

+ add effective address calculation time

*indicates maximum value

Memory

811/ 11 +

-

1011/ 11+

-

811/1)+

-
411 /0)+

-

F.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Static

Register Memory

- 1212/ 11+

1212/ 01 * -
- 1412/11 +

1412/ 0)* -

- 1212/1) +

1212/01* -

- 812/ 0) +

1012/ 01 -

Table F-15 indicates the number of clock periods required for the conditional instruc

tions. The number of bus read and write cycles is indicated in parenthesis as (r/w). The

number of clock periods and the number of read and write cycles must be added respec

tively to those of the effective address calculation where indicated.

Table F-15. Conditional Instruction Execution Times

Instruction Displacement

Bee Byte

Word

Byte
BRA Word

Byte
BSR Word

CC true
DB cc cc false

+ add effective address calculation time

*indicates maximum value

213

Branch Taken Branch Not Taken

10(2/ 0I 611/ 0I

1012 /0I 1012/0I

10 12/ 0I -
1012/0I -
1812/21 -
1812 / 21 -

- 1012/01

1012/ 01 1613/ 0I

F.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table F-16 indicates the number of clock periods required for the jump, jump-to
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

Table F·16. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr Size (An) (An) + -(An) d(An) d(An, ix) + xxx.W xxx.L d(PC) d(PC, ix)*

JMP - 812/ 01 - - 1012/01 1413/ 01 1012/ 01 1213/ 01 1012/ 01 1413/01

JSR - 1612/ 21 - - 1812/ 21 2212/21 1812/21 2013/21 1812/ 21 2212/ 21
LEA - 411 / 01 - - 812/ 0) 1212/ 01 812/ 01 1213/ 01 812/ 0I 1212/ 0I
PEA - 1211 / 21 - - 1612/ 21 2012/ 21 1612/21 2013/21 1612/ 21 2012/21

Word 12+ 4n 12+4n - 16+4n 18+4n 16+4n 20 + 4n 16+4n 18+ 4n
MOVEM 13+ n/ 01 13+ n/ 01 14+ n/ OI 14+ n/ 01 14+ n/ 01 15+ n/ OI 14+ n/ 01 14 + n/01
M -R Long 12+8n 12+8n - 16+8n 18 + 8n 16 + 8n 20 + 8n 16+ 8n 18 + 8n

13+ 2n/ OI 13+ 2n/ OI 14+ 2n/OI 14+2n/ OI 14 + 2n/ OI 15+ 2n/ OI 14+ 2n/ OI 14+2n/0)

Word 8 + 4n - 8 + 4n 12+4n 14 + 4n 12 + 4n 16 + 4n - -
MOVEM 12/nl 12/nl 13/nl 13/nl 13/ nl 14/nl - -

R-M Long 8+8n - 8+8n 12+8n 14 + 8n 12 + 8n 16 + 8n - -
12/2nl - 12/2nl 13/2nl 13/2nl 13/2nl 14/2nl - -

n is the number of registers to move
*is the size of the index register (ix) does not affect the instruction's execution time

F.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table F-17 indicates the number of clock periods for the multi-precision instructions. The
number of clock periods includes the time to fetch both operands, perform the opera·
tions, store the results, and read the next instructions. The number of read and write
cycles is shown in parenthesis as (r/w).

In Table F·17, the headings have the following meanings: Dn =data register operand and
M =memory operand.

Table F-17. Multi-Precision Instruction Execution Times

Loop Mode

Continued Terminated

Valid Count, Valid Count, Expired
Non-Looped cc False cc True Count

Instruction Size op On, On op M, M*

Byte, Word 4(1 /0) 1813/101 221 2/ 1) 2814/ 1) 2614/ 1)
ADDX

611 /01 3015/21 3214/21 3816/21 3616/21 Long

Byte, Word - 1213/0I 1412/ 01 2014/ 01 1814/ 0I
CMPM

2015/ 01 3016/ 01 2616/ 01 Long - 2414/ 0I

Byte, Word 411 / 01 18(3/ 11 2212/1) 2814/1) 26(4/1)
SUBX

Long 611 / 01 3015/ 21 3214/ 21 3816/2) 3616/2)

ABCD Byte 611 / 0) 1813/ 1) 2412/ 1) 3014/ 1) 2814/1)

SBCD Byte 611 / 0) 1813/1) 2412111 3014/1) 2814/1)

*Source and destination ea is IAnl + for CMPM and - IAnl for all others.

214

F.12 Ml~CELLANEOUS INSTRUCTION EXECUTION TIMES

Table F-18 indicates the number of clock periods for the following miscellaneous instruc·
tions. The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods plus the number of read and write cycles must be added to those
of the effective address calculation where indicated. ·

Table F-18. Miscellaneous Instruction Execution Times

Instruction Size

ANDI to CCR -
ANDI to SR -

CHK -

EORI to CCR -
EORI to SR -
EXG -

EXT
W ord

Long

LINK -
MOVE from CCR -
MOVE to CCR -

MOVE from SR -

MOVE to SR -
MOVE from USP -

MOVE to USP -

MOVEC -

MOVEP
Word

Long

NOP -
ORI to CCR -

ORI to SR -

RE SET -

RTD -
Short

RTE
Long, Retry Read

Long, Retry W rite

Long, No Retry

RTR -

RTS -

STOP -

SWAP -

TRAPV -

UNLK -

+ add effec tive address ca lcu lation time.
*

Register-
Register Memory Destination**

1612/Q) - -
1612/0) - -

811/ 0) + - -

1612/0l - -

161~/0) - -

611/ 0) - -
411/0l - -

411 / 0) - -

1612/ 2! - -

411/ 0) 811/ 1) + * -

1212/0) -1212/0) + -
411/0) 811/ l i + * -

1212/0) 1212/0) + -

611/ 0) - -

611/0) - -

- - 1012/01

- - 1612/2)

- - 2412/4)

411/0) - -

1612/ 0) - -

1612/ 0) - -
13011/ 0) - -
1614/0) - -

2416/01 - -
112127/ 10) - -

112126/1) - -

110126/0) - -

2015/01 - -
1614/0) - -
410/0) - -

411/0) - -

411/01 - -

1213/0) - -

Source**-
Register

-

-

-
-
-
-

-

-

-

-
-

-

-

-

-

1212/0)

1614/01

2416/0)

-

-

-
-

-

-

-

-

-

-
-
-

-

-

-

* * use non-fetching effective address ca lculation time.
Source or destination is a memory location for the MOVEP instruction and a control register for the MOVEC instruct ion .

215

F.13 EXCEPTION PROCESSING EXECUTION TIMES

Table F-19 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the
first two instruction words of the handler routine. The number of bus read and write
cycles is shown in parenthesis as (r/w).

Table F·19. Exception Processing Execution Times

Exception

Address Error 12614/261
Breakpoint Instruction* 4215/41

Bus Error 12614/261
CHK Instruction•* 4415/ 41 +
Divide By Zero 4215/41

Illegal Instruction 3814/41

Interrupt* 4615/41

MOVEC, Illegal Cr** 4615/41

Privilege Violation 3814/ 41

Reset'*** 4016/ 01
RTE, Illegal Format 5017 / 41
RTE, Illegal Revision 70112/ 41
Trace 3814/ 41
TRAP Instruction 3814/41
TRAPV Instruction 4015/ 41
+ add effective address calculation time .

*The interrupt acknowledge and b.reakpoint cycles are as
sumed to take four clock periods.

**Indicates maximum value.
***Indicates the time from when RESET and HALT are first .

sampled as negated to when instruction execution starts.

216

APPENDIX G
MC68010 LOOP MODE OPERATION

The MC68010 has several features that provide efficient execution of program loops. One
of these features is the DBcc looping primitive instruction. The DBcc instruction
operates on three operands, a loop counter, a branch condition, and a branch displace·
ment. When the DBcc is executed in loop mode, the contents of the low order word of the
register specified as the loop counter is decremented by one and compared to minus
one. If equal to minus one, the result of the decrement is placed back into the count
register and the next sequential instruction is executed, otherwise the condition code
register is checked against the specified branch condition. If the condition is true, the
result of the decrement is discarded and the next sequential instruction is executed.
Finally, if the count register is not equal to minus one and the branch condition is false,
the branch displacement is added to the program counter and instruction execution con·
tinues at that new address. Note that this is slightly different than non-looped execution ;
however, the results are the same.

An example of using the DBcc instruction in a simple loop for moving a block of data is
shown in Figure G-1. In this program, the block of data 'LENGTH ' words long at address
'SOURCE' is to be moved to address 'DEST' provided that none of the words moved are
equal to zero. When the effect of instruction prefetch on this loop is examined it can be
seen that the bus activity during the loop execution would be:

1. Fetch the MOVE.W instruction,
2. Fetch the DBEQ instruction,
3. Read the operand where AO points,
4. Write the operand where A1 points,
5. Fetch the DBEQ branch displacement, and
6. If loop conditions are met, return to step 1.

LOOP

LEA
LEA
MOV E.W
MOVE.W
DBEO

SOURCE. AO
DES T, A1
#LENGTH, DO
IAOl+ , IA11+
DO, LOOP

Load A Pointer To Source Data
Load A Pointer To Destination
Load The Counter Reg ister
Loop To Move The Block Of Data
Stop If Data Wo rd Is Zero

Figure G-1. DBcc Loop Program Example

During this loop, five bus cycles are executed; however, only two bus cycles perform the
data movement. Since the MC6801 O has a two word prefetch queue in additioi ~ to a one
word instruction decode register, it is evident that the three instruction fetches in this
loop could be eliminated by placing the MOVE.W word in the instruction decode register
and holding the DBEQ instruction and its branch displacement in the prefetch queue.
The MC68010 has the ability to do this by entering the loop mode of operation. During
loop mode operation, all opcode fetches are suppressed and only operand reads and
writes are performed until an exit loop condition is met.

217

Loop mode operation is transparent to the programmer, with only two conditions re
quired for the MC68010 to enter the' loop mode. First, a DBcc instruction must be ex
ecuted with both branch conditions met and a branch displacement of minus four; which
indicates that the branch is to a one word instruction preceding the DBcc instruction. Se
cond, when the processor fetches the instruction at the branch address, it is checked to
determine whether it is one of the allowed looping instructions. If it is, the loop mode is
entered. Thus, the single word looped instruction and the first word of the DBcc instruc
tion will each be fetched twice when the loop is entered; but no instruction fetches will
occur again until the DBcc loop conditions fail.

In addition to the normal term ination conditions for a loop, there are several conditions
that will cause the MC68010 to exit loop mode operation. These conditions are interrupts,
trace exceptions, reset errors, and bus errors. Interrupts are honored after each execu
tion of the DBcc instruction, but not after the execution of the looped instruction . If an in
terrupt exception occurs, loop mode operation is terminated and can be restarted on
return from the interrupt handler. If the T bit is set, trace exceptions will occur at the end
of both the loop instruction and the DBcc instruction and thus loop mode operation is not
available. Reset will abort all processing, including the loop mode. Bus errors during the
loop mode will be treated the same as in normal processing; however, when the RTE in
struction is used to continue the execution of the looped instruction, the three word loop
will not be re-fetched .

The loopable instructions available on the MC68010 are listed in Table G-1 . These instruc
tions may use the three address register indirect modes to form one word looping in
structions; (An), (An)+ , and - (An).

Table G-1. MC68010 Loopable Instructions

Applicable Applicable
Opcodes Addressing Modes Opcodes Addressing Modes

MOVE [BWL) IAyl to IAxl - IAyl to IAxl ABCD [BJ - IAyl to - IAxl
IAyl to IAxl + - IAyl to IAxl + ADDX [BWL)
IAy) to - IAxl - IAyl to - IAxl SBCD [BJ
IAyl + to IAxl Ry to IAxl SUBX [BW LJ
IAyl + to IAxl + Ry to IAxl +
IAyl + to - IAxl

CMP [BWLJ IAyl + to IAxl +
CLR [BWL) IAyl

ADD [BWL) IAyl to Dx NEG [BW LJ IAyl+
AND [BWLI IAyl + to Dx NEGX [BWL) -I Ay)
CMP [BWLI - IAyl to Dx NOT [BWLJ
OR [BWLI TST [BWL)
SU B [BWLI NBCD [BJ
ADDA [WLJ IAyl to Ax ASL [W) IAyl by #1
CMPA [WLJ - IAy) to Ax ASA [WJ IAyl + by #1
SUSA [W LJ IAyl+ to Ax LSL [W) - IAyl by #1
ADD [BWLI Dx to IAyl LSR [WI
AND [BWL) Dx to IAyl + AOL [WI
EOR [BWLI Dx to -IAyl ROA [WJ
OR [BWLI ROXL [WJ
SUB [BWLI ROXR [W)

NOTE
[B, W. or LI indicate an operand size of byte, word, or long word .

218

®MOTOROLA

MB BODO
16/32-BIT MICROPROCESSOR

fourth edition

In this new fourth edition of MSBOOO: 16/32 Bit Microprocessor Programmer's Ref
erence Manual, Motorola is offering the latest information to design engineers, soft
ware architects, and computer designers to aid in the completion of software systems
using Motorola's MSBOOO Family of Microprocessors.

Included is information that covers the basic MCSBOOO 16-bit microprocessor. Addi
t ionally, the 8-bit data bus device, the MCSBOOB, and the virtual memory processor,
the MC68010, are also explained in this edition.

To facilitate design and for the fullest understanding, each instruction is described in
detail in bit pattern format. Explicit examples demonstrate thoroLlghly how each in
struction operates.

The information in this manual is definitive; it makes possible the easiest and best de
signing. In addition, the software will be upward compatible with all future MSBOOO
family processors.

The Table of Contents shows the wide range of coverage in this manual: • Architec
tural Description • Data Organization and Addressing Capabilities • Instruction Set
Summary • Exception Processing • Appendices: Condition Code Computation; In
struction Set Details; Instruction Format Summary; MCSBOOO Instruction Exception
Times; MCSBOOB Instruction Exception Times; MC68010 Instruction Exception
Times; Loop Mode Operation.

ISBN 0-13-566795-X

	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_001
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_002
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_003
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_004
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_005
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_006
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_007
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_008
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_009
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_010
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_011
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_012
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_013
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_014
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_015
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_016
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_017
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_018
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_019
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_020
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_021
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_022
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_023
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_024
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_025
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_026
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_027
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_028
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_029
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_030
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_031
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_032
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_033
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_034
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_035
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_036
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_037
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_038
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_039
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_040
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_041
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_042
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_043
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_044
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_045
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_046
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_047
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_048
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_049
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_050
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_051
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_052
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_053
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_054
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_055
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_056
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_057
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_058
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_059
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_060
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_061
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_062
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_063
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_064
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_065
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_066
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_067
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_068
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_069
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_070
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_071
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_072
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_073
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_074
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_075
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_076
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_077
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_078
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_079
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_080
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_081
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_082
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_083
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_084
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_085
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_086
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_087
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_088
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_089
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_090
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_091
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_092
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_093
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_094
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_095
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_096
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_097
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_098
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_099
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_100
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_101
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_102
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_103
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_104
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_105
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_106
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_107
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_108
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_109
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_110
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_111
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_112
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_113
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_114
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_115
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_116
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_117
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_118
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_119
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_120
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_121
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_122
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_123
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_124
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_125
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_126
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_127
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_128
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_129
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_130
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_131
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_132
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_133
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_134
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_135
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_136
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_137
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_138
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_139
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_140
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_141
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_142
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_143
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_144
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_145
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_146
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_147
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_148
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_149
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_150
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_151
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_152
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_153
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_154
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_155
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_156
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_157
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_158
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_159
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_160
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_161
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_162
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_163
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_164
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_165
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_166
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_167
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_168
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_169
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_170
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_171
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_172
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_173
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_174
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_175
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_176
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_177
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_178
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_179
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_180
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_181
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_182
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_183
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_184
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_185
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_186
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_187
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_188
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_189
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_190
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_191
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_192
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_193
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_194
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_195
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_196
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_197
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_198
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_199
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_200
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_201
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_202
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_203
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_204
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_205
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_206
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_207
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_208
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_209
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_210
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_211
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_212
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_213
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_214
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_215
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_216
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_217
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_218
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_219
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_220
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_221
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_222
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_223
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_224
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_225
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_226
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_227
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_228
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_229
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_230
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_231
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_232
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_233
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_234
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_235
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_236
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_237
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_238
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_239
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_240
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_241
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_242
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_243
	M68000 16 32-Bit Microprocessor Programmer's Reference Manual 4th Edition p_244

