NMB3800
16/32-BIT MICROPROCESSOR

fourth edition

@ MOTOROLA

@ MOTOROLA

M68000

16/32-BIT MICROPROCESSOR

Programmer’s Reference Manual

@ MOTOROLA

M68000

16/32-BIT MICROPROCESSOR

Programmer’s Reference Manual

Fourth Edition

PRENTICE-HALL, Inc., Englewood Cliffs, N.J. 07632

Library of Congress Catalog Card No.: 83-62991

ISBN 0-13-566795-X
ISBN 0-13-541400-8 (Limited ed.)
ISBN 0-13-541392-3 (Special ed.)

Editorial/production supervision: Barbara A. Cassel
Manufacturing buyer: Gordon Osbourne

© 1984, 1982, 1980, 1979 by Motorola Inc.

All rights reserved. No part of this book may be reproduced in any form
or by any means without permission in writing from the publisher.

Motorola reserves the right to make changes to any products herein to improve
functioning or design. Although the information in this document has been carefully
reviewed and is believed to be reliable, Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others.

Printed in the United States of America

10 9 8 7 6 5 4

ISBN 0-13-5Ek795-X
ISBN 0-13-541400-8 {LIMITED ED.}
ISBN 0-13-541392-3 {SPECIAL ED.}

Prentice-Hall International Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall do Brasil, Ltda., Rio de Janiero
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

TABLE OF CONTENTS

Paragraph No. Title Page No.
Section 1
Architectural Description
1.1 INtrOdUGHION =c0n oS d SR T SN taverem merasmns. oiacmter ansrorarars o 1
1.2 Programmer's MOl .« .. aamnss cuna s se i i i g dueass v o 1
1.3 SoftWare DeVelODMBI s © s H e 6
1.3.1 Consistent Structure ... 6
1.3.2 Structured Modular Programmingvviiiirineeenennnn.. 6
1.3.3 Improved Software Testability nn.. 7
1.4 Virtual Memory/Machine Conceptsovuuiniunnnnnnn.. 8
1.4.1 VIR MEIIORY oo st e ions RS e e T e 8
1.4.2 Virtual Machine.t e 9
1.5 Reference Documentation.ottt 9
Section 2
Data Organization and Addressing Capabilities
2.4 IMTEOEUEHION o snn wuasuin woussm e R ms e s 11
2.2 OPBTANIBIZE oo mmiraines s 5 s e R s e e A 11
2.3 Data OrganizationinRegisters, 11
2.3.1 DataRegistersottt e e 11
23.2 AddressRegisters o noveaminil suEivave sy auaiae fe 11
2.4 Data Ofganizationin MEMOY: v somemais semmaises Semerivis 12
2.5 BAAESEINGE 11 imams wmismamsn smes o aeits. vomm S S T R s 13
2.6 Instruction Format i i e e 14
2.7 Program /Data References it 15
28 Registar NOtation o mecn ey sy S s Ty SR S e 15
29 Address Register Indirect Notation, 15
2.10 Register Specification oot e 16
2.11 Effective Addressttt e 16
2111 RegisterDirectModes ...ttt 16
21111 Data REGISIBr DIVECE s vimimmsns s aiian, comemsim s Frm s S e 16
2:11,:1.2 Addréss Register DIrSOT .. oo v iwmmmamns ammmair @i wamas 16
211.2 Memory Address Modes ...ttt e 17
211,21 Address RegisteriIndirect i 17
2.11.2.2 Address Register Indirect With Postincrement 17
2.11.2.3 Address Register Indirect With Predecrement 17
2.11.2.4 Address Register Indirect With Displacement 18
2.11.25 Address Register Indirect WithIndex 18
2113 Spacial Address Modes .vw cviviiimy voii i s deiid Cis e e 19
2.11.3.1 ALSolute Short AddresSs .« .oivesins mvavms wie ¥ b o 19
2.11.3.2 Absolute Long Addressiiiiiii i e 19
2.11.3.3 Program Counter With Displacement., 20
2.11.3.4 Program CounterWithIndext iiiiiinnnnn.n. 20
2.11.3.5 IMMEAIAtE DAA .cvvmwis ovmnmamn wivvniomvin £ Vet S s 21
2.11.4 Effective Address EncodingSummaryt .. 21
212 Implicit Referencet e 21
2.13 Stacks and QUeUSS sowsr rnaisse i Fve R e A S T 22
2121 SYSIEMUSHACK o v s saa e 5 s o i s 22
2.13.2 User Stacks e 23
2.13.3 05, S a5 RN e om S m i s o SR A B R BRSO e W 24

Paragraph No.

41

4.2

421
422
423
424
4.3

431
4.3.2
433
43.4
43.5
4.4

4.41
4.4.2
443
4.4.4
4.45
4486
4.4.7
448
449

4.49.1
4.49.2
4410

45

TABLE OF CONTENTS
(Continued)

Title Page No.

Section 3
Instruction Set Summary
INtroductiono e
DataMovement Operations.t
Integer Arithmetic Operations it
Logic Al PR B IO S s a s memn 2 i e o e s S R N i

Shift-and Rotate-Operations:: cuusierimy ainimes o il Erridea s
Bit Manipulation Operations i
Binary Coded Decimal Operations ...,
Program Control Operationsvvuuiiiiininrenrneennneenn..
systemControl OperationS:is i < i ciiaian crs g e s

Section 4
Exception Processing

IntrodUction v ren e prs i SeiiN SRS S ST
Priviiege StATES i« v v smme s siesanes:s o s ammans s st s s
SUpeEVISOrotalE v wenmemmme s s e S
UserStatet e e
Privilege:State Changes v el S unss SRisEar vy
Referenge Glassitication svew eemen wrremas o SmmEmes vemeea Lo
EXcEption PIOCRSSING oy anvmmns s aiem sieos s s s s (s dmmses
EXCEeptioN VECTOrS .. ot e
Kindsof EXceptionst
Multiple EXCEpHonS sunsmemiss syiaivn st @ yanss sudeyiney aualiis
Excoption StACK Frames «vowe svvisn s s S5eiins i i i i
Exception Processing SeqUENCE «uuwe s vemsmee svss aos aes ssans s
Exception Processing Detailed Discussion.oooiinnnn,
Reset: . i cinrmus Goieiie 1 UEanee G SR naleaE e SR
LIPS s pren Do o osann MRSREEIn G ST, ST S
Uninitialized INterrupt .« .ocumn s sy swise i e
SPUHOUS INTEITUPT . «ovvisvommimims gaetsmmess s smmnim e ssmmessess s s s
Instruction Trapsov i e e e e
lllegal and Unimplemented Instructionst
Privilege:VioIations e s ssamssariom mimam s iwasiis i wsmmine
TR BTV ot oo o oo e T e RO M HTN SE ER A SEND NEAwAiten
BUS EITOr .ottt e e i e e
Bus Error (MC68000/MCB8008)cvvviiiiinininennnnnnan

BUS Error (MGEBO0A0). . v v wrnmisise. v aianss s it araes
AAAEESE EXFOT . v icn s mmsivomaresin s aosie s e wae s
Return From Exception (MCB8010)ciitiiriiii it

Vi

Paragraph No.

A
A2

A4
A5

B.1
B.2
B.3
B.4

C.1

D.1
D.2
D.3
D.4

D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13

TABLE OF CONTENTS

(Continued)
Title Page No.
Appendix A
Condition Codes Computation
INETOUEHON < ovws sviarmarvn smsy PR SR e b e e S 49
CondHion Code REGISIEEF . .co v s s vat s sahmeasiie o 49
Condition Code Register Notationcviiininiinnnnnnn.. 49
Condition Code Computationcoiiiiriniirniinnennnn. 50
Conditional Tests: o e e S E e, B 52

Appendix B
Instruction Set Details

IrOdUCHION . e e 53
Addressing Categories: v uvs vonims s ovavim vime s svssme s 53
Instruction Descriptionccvcviviveiiiionriveiiensrennenivess 54
Register Transfer Language Definitions 55

Appendix C
Instruction Format Summary
IR GAUCHION v oo amraisimmins asmmrn i S B A R DA TR e 165

Appendix D
MC68000 Instruction Execution Times

VAR TO AU IO o smonsviprvin o s i oo, o s s o s e et a i e 187
Operand Effective Address Calculation Timing 187
Move Instruction Execution TIMesov vt oo eeeens 188
Standard Instruction Execution Times.cvvn i e, 189
Immediate Instruction ExecutionTimesc.coviriinnnenen.. 190
Single Operand Instruction ExecutionTimes 191
Shift/Rotate Instruction ExecutionTimescoviiiinnnnnnn. 191
Bit Manipulation Instruction ExecutionTimes 192
Conditional Instruction Execution Timesovverernnnnn.s 192
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........ 193
Multi-Precision Instruction ExecutionTimescovuuvu... 193
Miscellaneous Instruction ExecutionTimes, 194
Exception Processing Execution TimMesovvieinenennnnnns 195

vii

Paragraph No.

F.1

F.3
F.4
F.5
F.6
F.7

F.9

F.10
F.11
F.12
F.13

TABLE OF CONTENTS
(Continued)

Title Page No.

Appendix E
MC68008 Instruction Execution Times

IO AUG DT v vvine o rmcomeerins v sosim v i SRR C A RIS ST o 197
Operand Effective Address CalculationTimes 197
Move Instruction Execution Timesttt 198
Standard Instruction Execution Times oot i i i it 199
Immediate Instruction Execution Timesoviii it innnnnnns 200
Single Operand Instruction ExecutionTimes 201
Shift/Rotate Instruction ExecutionTimes ..., 201
Bit Manipulation Instruction ExecutionTimes 202
Conditional Instruction Execution Timesccvvirvinennenns 202
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........ 203
Multi-Precision Instruction Execution Times 203
Miscellaneous Instruction ExecutionTimes, 204
Exception Processing ExecutionTimes.o, 205

Appendix F
MC68010 Instruction Execution Times

IREFOCIBERION . vrancierarassiamse s o ooy s ae S e o e e & A o s T 207
Operand Effective Address CalculationTimes 207
Move Instruction Execution Timesoty 208
Standard Instruction Execution Times.cooo it ii it 209
Immediate Instruction ExecutionTimes 210
Single Operand Instruction Execution Times 211
Shift/Rotate Instruction ExecutionTimes 212
Bit Manipulation Instruction Execution Times 213
Conditional Instruction ExecutionTimescciiiieinnnn. 213
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........ 214
Multi-Precision Instruction Execution Times, 214
Miscellaneous Instruction ExecutionTimescoviviinne.. 215
Exception Processing ExecutionTimes. oo, 216

Appendix G
MC68010 Loop Mode Operation
MC68010 Loop Mode Operationccviiiiiiiiiniiiiinennn. 217

viii

Figure No.

LIST OF ILLUSTRATIONS

Title Page No.
User Programmer’s Model (MC68000/MC68008/MC68010). 2
Supervisor Programmer’s Model Supplement (MC68000/MC6808) 2
Supervisor Programmer’s Model Supplement (MC68010) 3
Status Registorua covereaies G Doy ivnvie ies o 3
Word. g ez et IO IV BTN e i mms s s s SR, S 12
Data Organization INMemory ...t 12
Memory Data Organization of the MCB88008ocvuvrrnnn. 14
INStIICTIOM FOFMBL s rrsm sy e rada s Guavem v eing Jas 15

Single-Effective-Address-Instruction Operation Word — General Format 16

ExceptionVector Format. it 36
Peripheral Vector NumberFormat e, 36
Address Translated from 8-Bit Vector Number

(MEBBDDO, MEBBOOBY.c.+ wvenssvmmmmimimmn v s s 36
Exception Vector Address Calculation (MC68010) 36
MC68000, MC68008 Group 1 and 2 Exception Stack Frame 39
MEEB010 Stack Eramet e voasssn maesmin sy Sorenm Sy s 39
Supervisor Stack Crder for Bus or Address Error Exception 45
Exception Stack Order (Bus and AddressError) 46
Special Status Word Formatoit i e e 46
Instruction Description Format. 54
DBcc Loop Program Examplec.ovitiiiiiii it 217

LIST OF TABLES

Title Page No.
Data AddressingModesttt i i e 4
INStTUCtioN Set SUMMATY < wioivirirem G i v v s 5
Variatiohs ol NSt OCTIEN TYDEE « omerimmusomimcs s s i o s am s a smmy 5
Effective Address EncodingSummarycoiiiiiiiiinenann 22
Implicit Instruction ReferenceSummary 22
DataMovement Operations.c.oviiiiii it 28
Integer Arithmetic Operations 29
Logical Operations v iaddpuaasi iei i ansom s svanin Zugsivaiine 29
Shift and Rotate Operations, 30
Bit Manipulation Operations e mmvansinas s o it v ew e 30
Binary Coded Decimal Operationscoviinininnennennnan. 31
Program Control Operationsovuiiiininieiieiieeinanns 31
System Control Operations « ..:covias veiivsiin soieie Vi daianin 32
Referanc@ Classiflcation .« cvasooinis svmmmmoams v s meees S wams . 35
Exception Vector Assignment. i 37
Exception Groupingand Priority 38
MGEBO10 Format-Codes o von smnmmns, v sl it Lo S 40
Condition Code COMPULAIONS o s s s sy mmsivas ey 51
Conditional Testsovitii i e it s 52
Effective Addressing Mode Categoriesccviiiiiininenennn 53
Operation Coda Map . .cvvvcevvivimmeiesssens s v se e ses s 165
Effective Address EncodingSummarycooiviiiininnenann. 165
CONATIONAITESES . o vovivmivisiia i disiousn b p s s nomns msmie b8 e m Sk &8 B0 166
Effective Address CalculationTimescovviviiiiinnnnennn 187
Move Byte and Word Instruction ExecutionTimes 188
Move Long Instruction ExecutionTimes it 188
Standard Instruction ExecutionTimes.......... ..o, 189
Immediate Instruction ExecutionTimes ...t 190
Single Operand Instruction ExecutionTimes 191
Shift/Rotate Instruction ExecutionTimes 191
Bit Manipulation Instruction ExecutionTimes 192
Conditional Instruction ExecutionTimes 192
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........ 193
Multi-Precision Instruction ExecutionTimes0utn 193
Miscellaneous Instruction ExecutionTimescoovvtn 194
Move Peripheral Instruction ExecutionTimes................covvutn 194
Exception Processing ExecutionTimes..........cooivviiiiiinan, 195
Effective Address CalculationTimes, 197
Move Byte Instruction ExecutionTimes.o it 198
Move Word Instruction ExecutionTimeso, 198

Paragraph No.

E-4
E-5
E-6
E-7
E-8
E-9
E-10
E-11
E-12
E-13
E-14
E-15

F-1
F-2
F-3
F-4
F-5
F-6
F-7
F-8
F-9
F-10
F-11
F-12
F-13
F-14
F-15
F-16
F-17
F-18
F-19

G-1

LIST OF TABLES

(Continued)

Title Page No.
Move Long Instruction Execution Times, 199
Standard Instruction ExecutionTimes., 199
Immediate Instruction Clock Periodscoiiniiiinennnn. 200
Single Operand Instruction ExecutionTimes 201
Shift/Rotate Instruction Clock Periods. 201
Bit Manipulation Instruction ExecutionTimescovvvunnn. 202
Conditional Instruction Execution Timesc.oireiininennnnn. 202
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........ 203
Multi-Precision Instruction ExecutionTimesccvuv... 203
Miscellaneous Instruction Execution Timesovvvenvnnnnnnn. 204
Move Peripheral Instruction ExecutionTimes....................... 204
Exception Processing ExecutionTimes.ccoiininininnnnn, 205
Effective Address CalculationTimescoiiinienrnennnn 207
Move Byte and Word Instruction Execution Times 208
Move Byte and Word Instruction Loop Mode Execution Times 208
Move Long Instruction ExecutionTimes, 208
Move Long Instruction Loop Mode ExecutionTimes 209
Standard Instruction ExecutionTimes.o i, 209
Standard Instruction Loop Mode Execution Times. 210
Immediate Instruction ExecutionTimes 210
Single Operand Instruction ExecutionTimes 211
Clear Instruction Execution Timeso e e P 211
Single Operand Instruction Loop Mode ExecutionTimes 211
Shift/Rotate Instruction ExecutionTimeso, 212
Shift/Rotate Instruction Loop Mode ExecutionTimes................ 212
Bit Manipulation Instruction ExecutionTimes, 213
Conditional Instruction ExecutionTimesccciiiiivnn.. 213
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........ 214
Multi-Precision Instruction ExecutionTimescoiuinnn. 214
Miscellaneous Instruction ExecutionTimes 215
Exception Processing Execution Times. 216
MCEB010 Loopable Instructions .« c oo iwmn swsminses o e s 218

Xi

PREFACE

With the advent of 16-bit microprocessor technology, thorough, concise, and useful
manuals must be provided to aid designers in development of their systems. This
manual gives all the key information for software architects, computer designers, and
programmers to complete software systems using Motorola’s M68000 Family of
Microprocessors. Hardware designers should consult the Advance Information data
sheets for the appropriate microprocessor — MC68000, MC68008, and MC68010.

To facilitate design and for the fullest understanding, each instruction is described in
detail in bit pattern format. Explicit examples are then shown to more thoroughly
demonstrate how each instruction will operate.

This definitive information will allow the easiest and best designing possible.

Additonally, the software in this manual will be upward compatible with all future
M68000 family processors.

xiii

Information that is unique to the
MC68010 is marked with a solid bar
() in the outside margin.
Information that is unique to the
MC68008 is marked with a dashed
bar ().

@ MOTOROLA

M68000

16/32-BIT MICROPROCESSOR

Programmer’s Reference Manual
g

SECTION 1
ARCHITECTURAL DESCRIPTION

1.1 INTRODUCTION

In 1979, Motorola introduced the first implementation of the M68000 16/32-bit
microprocessor architecture — the MC68000. The MC68000, with a 16-bit data bus and
24-bit address bus, was only the first in a family of processors which implement a com-
prehensive, extensible computer architecture. It was soon followed by the MC68008, with
an 8-bit data bus and 20-bit address bus, and by the MC688010, which introduced the vir-
tual machine aspects of the M68000 architecture. Soon the MC68020 with its 32-bit data
and address buses will be introduced, implementing the next stage of the M68000.

This manual is intended to serve as a programmer’s reference for both systems and ap-
plications programmers of the three current implementations of the M68000 — the
MCB8008, the MC68000, and the MC68010. The hardware system design aspects of these
processors, such as bus structure and control, are presented in the respective advance
information data sheets for each device.

The MC68000 and the MC68008 are identical from the view of the programmer, with the
exception that the MC68000 can directly access 16 megabytes (24 bits of address) and
the MC68008 can directly access 1 megabyte (20 bits of address). The MC68010 has much
in common with the first two devices but also possesses some additional instructions
and registers as well as full virtual machine/memory capability. Since the processors are
so similar to the programmer, only the differences are highlighted. When the M68000 is
referenced, the feature described is common to all. If a particular feature is applicable
only to one processor, the MC part number will be referenced.

1.2 PROGRAMMER’S MODEL

The M6B8000 executes instructions in one of two modes — user mode or supervisor mode.
The user mode is intended to provide the execution environment for the majority of ap-
plication programs. The supervisor mode allows some additional instructions and
privileges and is intended for use by the operating system and other system software.
See SECTION 4 EXCEPTION PROCESSING for further details.

To provide for the upward compatibility of code written for a specific implementation of
the M68000, the user programmer’s model is common to all implementations. The user
programmer's model is shown in Figure 1-1

As shown in the user programmer’s model, the M68000 offers 16 32-bit general purpose
registers (D0-D7, A0-A7), a 32-bit program counter, and an 8-bit condition code register.
The first eight registers (D0-D7) are used as data registers for byte (8-bit), word (16-bit),

and long word (32-bit) operations. The second set of seven registers (A0-A6) and the stack
pointer (USP) may be used as software stack pointers and base address registers. In ad-
dition, the address registers may be used for word and long word operations. All of the 16
registers may be used as index registers.

il 1615 87 0

DO
D1
D2
D3
D4
D5
D6
D7

Data
Registers

| A0

| Al

| A e
| _-AS Registers
| Ad

I A5

| AB

I

1

A7 User Stack
{USP) Pointer

Y Program
l | PC Counter

7 0
Condition Code
ECCH Register

Figure 1-1. User Programmer’s Model (MC68000/MC68008/MC68010)

The supervisor programmer’s model includes some supplementary registers in addition
to the above mentioned registers. The MC68000 and the MC68008 contain identical
supervisor mode register resources. These are shown in Figure 1-2 and include the status
register (high order byte) and the supervisor stack pointer (A7).

31 1615 9
3]A?’ ~ Supervisor Stack
| ! (SSPI Pointer
15 87 0
T
| | CCR |SR Status Register

1

Figure 1-2. Supervisor Programmer’s Model Supplement (MC68000/MC68008)

The supervisor programming model supplement of the MC68010 is shown in Figure 1-3. In
addition to the supervisor stack pointer and status register, it includes the vector base
register and the alternate function code registers.

The vector base register is used to determine the location of the exception vector table in
memory to support multiple vector tables. The alternate function code registers allow the
supervisor to access user data space or emulate CPU space cycles.

31 1615 o]
i A7 Supervisor Stack

| (SSP pointer
15 87 4]
T
[| CCR_|SR Staws Register
) 0

IUBR Vector Base Register

2 0

SFC Alernate Function
pre Coce Registers

Figure 1-3. Supervisor Programmer’s Model Supplement (MC68010)

The status register, shown in Figure 1-4, contains the interrupt mask (eight levels
available) as well as the condition codes: overflow (V), zero (Z), negative (N), carry (C), and
extend (X). Additional status bits indicate that the processor is in a trace (T) mode and/or
in a supervisor (S) state.
Five basic data types are supported. These data types are:

® Bits
® BCD Digits (4 Bits)
® Bytes (8 Bits)
® Words (16 Bits)
® |Long Words (32 Bits)
In addition, operations on other data types such as memory addresses, status word data,
etc. are provided for in the instruction set.

System Byte User Byte

AN —N
NV

ENONNOOIONNONAnE
e

Trace Mode

Supervisor
State
Interrupt :

Mask ,[

Extend

MNegative
Condition
Codes

Zero

Overflow

Carry

Figure 1-4. Status Register

The 14 flexible addressing modes, shown in Table 1-1, include six basic types:
Register Direct

Register Indirect

Absolute

Immediate

Program Counter Relative

Implied

Included in the register indirect addressing modes is the capability to do post-
incrementing, predecrementing, offsetting, and indexing. Program counter relative mode
can also be modified via indexing and offsetting.

Table 1-1. Data Addressing Modes

NOTES:
EA = Effective Address
An= Address Register

Mode Generation

Register Direct Addressing

Data Register Direct
Address Register Direct

EA=Dn
EA=An

Absolute Data Addressing
Absolute Short
Absolute Long

EA = (Next Word)
EA = (Next Two Words)

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

EA=(PCl+dig
EA=(PC)+{Xn) + dg

Register Indirect Addressing
Register Indirect

Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Difset

Indexed Register Indirect with Offset

EA=(An)

EA=(An), An=—An+N
An=—An-N, EA=(An)
EA=(Anl+dig
EA=(Anl + (Xnl +dg

Immediate Data Addressing
Immediate
Quick Immediate

DATA = Next Wordis)
Inherent Data

Implied Addressing
Implied Register

EA=SR, USP, SSP, PC,

Dn=Data Register

Xn= Address or Data Register used as Index Register

3R = Status Register

PC= Program Counter

{)= Contents of

dg = 8-Bit Offset (Displacement)

d1g= 16-Bit Offset (Displacement)

N=1 for byte, 2 for word, and 4 for long word. If An is
the stack pointer and the operand size is byte, N=2
to keep the stack pointer on a word boundary.

— = Replaces

VBR, SFC, DFC

The M68000 instruction set is shown in Table 1-2. Some additional instructions are varia-
tions or subsets of these and they appear in Table 1-3. Special emphasis has been given
to the instruction set’s support of structured high-level languages to facilitate ease of
programming. Each instruction, with a few exceptions, operates on bytes, words, and
long words and most instructions can use any of the 14 addressing modes. Combining in-
struction types, data types, and addressing modes, over 1000 useful instructions are pro-
vided. These instructions include signed and unsigned multiply and divide, “quick”
arithmetic operations, BCD arithmetic, and expanded operations (through traps). Addi-
tionally, its high-symmetric, proprietary microcoded structure provides a sound, flexible
base for the future.

Table 1-2. Instruction Set Summary

Mnemonic Description Mnemonic Description
ABCD* Add Decimal with Extend MOVE* Move Source to Destination
ADD* Add MOVEC Mowve Control Register
AND* Logical And MULS Signed Multiply
ASL* Arithmetic Shift Left MULU Unsigned Multiply
ASR* Arithmetic Shift Right NBCD* Negate Decimal with Extend
Bece Branch Conditionally NEG* Negate
BCHG Bit Test and Change NOP Mo Operation
BCLR Bit Test and Clear NOT* One's Complement
BRA Branch Always OR* Logical Or
BSET Bit Testand Set. PEA Push Effective Address
BSAR Branch to Subroutine =
BTST Bit Test ESEET :es:et E:t;ma!lsev;cgst)
= - otate Left without Exten
g[‘:‘ g:;eafkozi?:r:gr Againgt:Bounads ROR* Rotate Right without Extend
cmp* Sortie ROXL* Rotate Left with Extend
ROXR* Rotate Right with Extend

DBcc Decrement and Branch Conditionally RTD Return and Deallocate
DIVS Signed Divide RTE Return from Exception
Divu Unsigned Divide RTR Return and Restore
EOR* Exclusive Or RTS Return from Subroutine
EXG Exchange Registers SBCD* Subtract Decimal with Extend
EXT Sign Extend Sce Set Conditional
JMP Jump STOP Stop
JSR Jump to Subroutine sus* Subtract
LEA Load Effective Address SWap Swap Data Register Halves
LINK Link Stack TAS Test and Set Operand
LsL* Logical Shift Left TRAP Trap
LSR* Logical Shift Right TRAPV Trap on Overflow

T " 5 F : TSTY Test

These instructions available in loop mode on MCB8010. See

UNLK Unlink

APPENDIX G MC68010 LOOP MODE OPERATION.

Table 1-3. Variations of Instruction Types

Instruction i ;o i
Tr:ps Variation Description Ins;-r: ::on Wariation Description
ADD ADD* Add MOVE MOVE* Move Source to Destination
ADDA* Add Address MOVEA* Move Address
ADDQ Add Quick MOVEC Move Control Register
ADDI Add Immediate MOVEM Move Multiple Registers
ADDX* Add with Extend MOVEP Move Peripheral Data
AND AND* Logical And MOVEQ Move Quick
ANDI And Immediate MOVES Move Alternate Address Space
ANDI to CCR | And Immediate to MOVE from SR | Move from Status Register
Condition Codes MOVE to SR | Move 1o Status Register
ANDI to SR | And Immediate to MOVE from N
Status Register CCR Move from Condition Codes
MOVE to CCR | Move to Condition Codes
CMP Ccmp* Compare :
CMPA* Compare Address MOV‘E USP Move User Stack Pointer
CMPM* Compare Memory NEG NEG® Negate
CMP| Compare Immediate NEGX Negate with Extend
EOR EOR* Exclusive Or OR OR* Logical Or
EORI Exclusive Or Immediate ORI Or Immediate
EOQRI to CCR | Exclusive Or Immediate to ORI to CCR Or Immediate to
Condition Codes Condition Codes
EORI to SR Exclusive Or Immediate to ORI to SR Or Immediate to
Status Register Status Register
*
*These instructions available in loop mode on MCE8010. See sus ggg.&.“ gzg::gg: Addnsss
APPENDIX G MC68010 LOOP MODE OPERATION. suBl S ubtast Tmrediais
SUBQ Subtract Quick

SUBX* Subtract with Extend

1.3 SOFTWARE DEVELOPMENT

Many innovative features have been incorporated to make programming easier, faster,
and more reliable.

1.3.1 CONSISTENT STRUCTURE. The highly regular structure of the M68000 greatly
simplifies the effort required to write programs in assembly language as well as high-
level languages. Operations on integer data in registers and memory are independent of
the data. Separate special instructions that operate on byte (8 bit), word (16 bit), and long
word (32 bit) integers are not necessary. The progammer need only remember one
mnemonic for each type of operation and then specify data size, source addressing
mode, and destination addressing mode. This has helped keep the total number of in-
structions small.

The dual operand nature of many of the instructions significantly increases the flexibility
and power of the M68000. Consistency is again maintained since all data registers and
memory locations may be either a source or destination for most operations on integer
data.

The addressing modes have been kept simple without sacrificing efficiency. All fourteen
addressing modes operate consistently and are independent of the instruction operation
itself. Additionally, all address registers may be used for the direct, register indirect, and
indexed addressing modes (immediate, program counter relative, and absolute address-
ing by definition do not use address registers). For increased flexibility, any address or
data register may be used as an index register. Address register consistency is maintain-
ed for stacking operations since any of the eight address registers may be utilized as
user program stack pointers with the register indirect postincrement/predecrement ad-
dressing modes. Address register A7, however, is a special register that, in addition to its
normal addressing capability, functions as the system stack pointer for stacking the pro-
gram counter for subroutine calls as well as stacking the program counter and status
register for traps and interrupts (while in the supervisor state).

1.3.2. STRUCTURED MODULAR PROGRAMMING. The art of programming
microprocessors has evolved rapidly in the past few years. Numerous advanced techni-
ques have been developed to allow easier, more consistent and reliable generation of
software. In general, these techniques require that the programmer be more disciplined
in observing a defined programming structure such as modular programming. Modular
programming allows a required function or process to be broken down in short modules
or subroutines that are concisely defined and easily programmed and tested. Such a
technique is greatly simplified by the availability of advanced structured assemblers and
block structured high-level languages such as Pascal. Such concepts are virtually
useless, however, unless parameters are easily transferred between and within software
modules that operate on a reentrant and recursive basis. (To be reentrant a routine must
be usable by interrupt and non-interrupt driven programs without the loss of data. A
recursive routine is one that may call or use itself.) The M68000 provides the necessary
architectural features to allow efficient reentrant modular programming. The LINK and
UNLK instructions reduce subroutine call overhead in two complementary instructions
by allowing the manipulation of linked lists of data areas on the stack. The MOVEM

(Move Multiple Register) instruction also reduces subroutine call programming overhead.
This allows moving, via an effective address, multiple registers that are specified by the
programmer. Sixteen software trap vectors are provided with the TRAP instruction and
are useful in operating system call routines or user generated macro routines. Other in-
structions that support modern structured programming techniques are PEA (Push Effec-
tive Address), LEA (Load Effective Address), RTR (Return and Restore), RTE (Return from
Exception) as well as JSR, BSR, and RTS.

The powerful vectored priority interrupt structure of the microprocessor allows
straight-forward generation of reentrant modular input/output routines. Seven maskable
levels of priority with 192 vector locations and seven autovector locations provide max-
imum flexibility for /0 control (a total of 255 vector locations are available for interrupts,
hardware traps, and software traps).

1.3.3. IMPROVED SOFTWARE TESTIBILITY. The M68000 incorporates several features
that reduce the chance for errors. Some of these features, such as consistent architec-
ture and the structured modular programming capability, have already been discussed.

Of major importance to the system programmer are features that have been incorporated
specifically to detect the occurrence of programming errors or bugs. Several hardware
traps, provided to indicate abnormal internal conditions, detect the following error condi-
tions:

Word Access with an Odd Address

lllegal Instructions

Unimplemented Instructions

lllegal Memory Access (Bus Error)

Divide by Zero

Overflow Condition Code (Separate Instruction TRAPV)

Register Out of Bounds (CHK Instruction)

Spurious Interrupt

Additionally, the sixteen software TRAP instructions may be utilized by the programmer
to provide applications-oriented error detection or correction routines.

An additional error detection tool is the CHK (Check Register Against Bounds) instruc-
tion used for array bound checking by verifying that a data register contains a valid
subscript. A trap occurs if the register contents are negative or greater than a limit.

Finally, the M68000 includes a facility that allows instruction-by-instruction tracing of a
program being debugged. This trace mode results in a trap being made to a tracing
routine after each instruction executed. The trace mode is available to the programmer
when the microprocessor is in the supervisor state as well as the user state but may only
be entered while in the supervisor state. The supervisor/user states provide an additional
degree of error protection for the microprocessor by allowing memory protection of
selected areas of memory when an external memory management device is used.

1.4 VIRTUAL MEMORY/MACHINE CONCEPTS

The MC68010 introduced the virtual memory/machine concept of the M68000 architec-
ture.

In most systems using the MC688010 as the central processor, only a fraction of the 16
megabyte address space will actually contain physical memory. However, by using vir-
tual memory techniques the system can be made to appear to the user to have 16
megabytes of physical memory available to him/her. These techniques have been used
for several years in large mainframe computers and more recently in minicomputers and
now, with the MC68010, can be fully supported in microprocessor-based systems.

In a virtual memory system, a user program can be written as though it has a large
amount of memory available to it when only a small amount of memory is physically pre-
sent in the system. In a similar fashion, a system can be designed in such a manner as to
allow user programs to access other types of devices that are not physically present in
the system such as tape drives, disk drives, printers, or CRTs. With proper software
emulation, a physical system can be made to appear to a user program as any other com-
puter system and the program may be given full access to all of the resources of that
emulated system. Such an emulated system is called a virtual machine.

1.4.1 VIRTUAL MEMORY. The basic mechanism for supporting virtual memory in com-
puters is to provide only a limited amount of high-speed physical memory that can be ac-
cessed directly by the processor while maintaining an image of a much larger “virtual”
memory on secondary storage devices such as large capacity disk drives. When the pro-
cessor attempts to access a location in the virtual memory map that is not currently
residing in physical memory (referred to as a page fault), the access to that location is
temporarily suspended while the necessary data is fetched from the secondary storage
and placed in physical memory; the suspended access is then completed. The MC68010
provides hardware support for virtual memory with the capability of suspending an in-
struction’s execution when a bus error is signaled and then completing the instruction
after the physical memory has been updated as necessary.

The MC68010 uses instruction continuation rather than instruction restart to support vir-
tual memory. With instruction restart, the processor must remember the exact state of
the system before each instruction is started in order to restore that state if a page fault
occurs during its execution. Then, after the page fault has been repaired, the entire in-
struction that caused the fault is reexecuted. With instruction continuation, when a page
fault occurs the processor stores its internal state and then after the page fault is
repaired, restores that internal state and continues execution of the instruction. In order
for the MC68010 to utilize instruction continuation, it stores its internal state on the
supervisor stack when a bus cycle is terminated with a bus error signal. It then loads the
program counter from vector table entry number two (offset $008) and resumes program
execution at that new address. When the bus error exception handler routine has com-
pleted execution, an RTE instruction is executed which reloads the MC68010 with the in-
ternal state stored on the stack, re-runs the faulted bus cycle, and continues the
suspended instruction. Instruction continuation has the additional advantage of allow-
ing hardware support for virtual I/O devices. Since virtual registers may be simulated in

the memory map, an access to such a register will cause a fault and the function of the
register can be emulated by software.

1.4.2 VIRTUAL MACHINE. One typical use for a virtual machine system is in the develop-
ment of software such as an operating system for another machine with hardware also
under development and not available for programming use. In such a system, the govern-
ing operating system emulates the hardware of the new system and allows the operating
system to be executed and debugged as though it were running on the new hardware.
Since the new operating system is controlled by the governing operating system, the new
one must execute at a lower privilege level than the governing operating system, so that
any attempts by the new operating system to use virtual resources that are not physically
present, and should be emulated, will be trapped by the governing operating system and
handled in software. In the MC68010, a virtual machine may be fully supported by running
the new operating system in the user mode and the governing operating system in the
supervisor mode so that any attempts to access supervisor resources or execute privileg-
ed instructions by the new operating system will cause a trap to the governing operating
system.

In order to fully support a virtual machine, the MC68010 must protect the supervisor
resources from access by user programs. The one supervisor resource that is not fully
protected in the MC68000 is the system byte of the status register. In the MC68000 and
MC68008, the MOVE from SR instruction allows user programs to test the S bit (in addi-
tion to the T bit and interrupt mask) and thus determine that they are running in the user
mode. For full virtual machine support, a new operating system must not be aware of the
fact that it is running in the user mode and thus should not be allowed to access the S bit.
For this reason, the MOVE from SR instruction has been added to allow user program
unhindered access to the condition codes. By making the MOVE from SR instruction
privileged, when the new operating system attempts to access the S bit, a trap to the
governing operating system will occur, and the SR image passed to the new operating
system by the governing operating system will have the S bit set.

1.5 REFERENCE DOCUMENTATION

Electrical and mechanical information for the three microprocessors covered in this
reference manual is available in the individual data sheets listed below.

Title Ref. No.
MC68000 16-Bit Microprocessor ADI-814
MC68008 16-Bit Microprocessor with 8-Bit Data Bus ADI-939
MC68010 16-Bit Virtual Memory Microprocessor ADI-942

Consult your nearest Motorola Sales Office or franchised distributor for a copy of the
desired data sheet. Single copies are also available from the Motorola Semiconductor
Prodv s Literature Distribution Center, P.O. Box 20924, Phoenix, Arizona 85306. Their
telephone number is (602)994-6561.

SECTION 2
DATA ORGANIZATION AND
ADDRESSING CAPABILITIES

2.1 INTRODUCTION

This section describes the data organization and addressing capabilities of the M68000
architecture.

2.2 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a
long word equals 32 bits. The operand size for each instruction is either explicitly encod-
ed in the instruction or implicitly defined by the instruction operation. All explicit instruc-
tions support byte, word, or long word operands. Implicit instructions support some
subset of all three sizes.

2.3 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address
registers together with the active stack pointer support address operands of 32 bits.

2.3.1 DATA REGISTERS. Each data register is 32 bits wide. Byte operands occupy the low
order 8 bits, word operands the low order 16 bits, and long word operands the entire 32
bits. The least significant bit is addressed as bit zero; the most significant bit is address-
ed as bit 31.

When a data register is used as either a source or destination operand, only the ap-
propriate low order portion is changed; the remaining high-order portion is neither used
nor changed.

2,3.2. ADDRESS REGISTERS. Each address register and the stack pointer is 32 bits wide
and holds a full 32 bit address. Address registers do not support byte sized operands.
Therefore, when an address register is used as a source operand, either the low order
word or the entire long word operand is used depending upon the operation size. When
an address register is used as the destination operand, the entire register is affected
regardless of the operation size. If the operation size is word, any other operands are sign
extended to 32 bits before the operation is performed.

11

2.4 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address the
same as the word as shown in Figure 2-1. The low order byte has an odd address that is
one count higher than the word address. Instructions and multibyte data are accessed
only on word (even byte) boundaries. If a long word datum is located at address n (n even),
then the second word of that datum is located at address n + 2.

15 14 13 12 1 10 9 8 7 B 5] 4 3 2 1 4]
Word 000000
Byte 000000 | Byte 000001
Word 000002
Byte 000002 Byte 000003

My
N

Word FFFFFE
Byte FFFFFE | Byte FFFFFF

Figure 2-1. Word Organization In Memory

The data types supported by the MB8000 are: bit data, integer data of 8, 16, and 32 bits,
32-bit addresses, and binary coded decimal data. Each of these data types is put in
memory as shown in Figure 2-2. The numbers indicate the order in which the data would
be accessed from the processor. For convenience, the organization of data in memory for
the MC68008 is shown in Figure 2-3. The appearance to the programmer, however, is iden-
tical to the MC68000 and MC68010.

Bit Data
1 Byte=8 Bits
7 6 5 4 3 2 1 0

Integer Data

1 Byte =8 Bits
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
MSB Byte 0 LSB .Bvle 1
Byte 2 Byte 3

1 Word =16 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB Word 0 LSB
Word 1
Word 2

Figure 2-2. Data Organization In Memory (Sheet 1 of 2)

12

-
Even Bytes Odd Bytes .
-
7 6 5 4 3 2 1 0)7 6 5 4 3 2 1 0 =
1 Long Word = 32 Bits
15 14 13 12 n 10 9 3 7 6 5 4 3 2 1 Q
MSB
High Order
— —longWord0— — — — — — — — — — — — - - —_— ———_—— — —
Low Qrder LSB
— —LlomgWord 11— — — — — — — — — — — — -
— —longWord2— — — — — — — — — —
Addresses
1 Address = 32 Bits
15 14 13 12 1 10 g 8 7 6 5 4 3 2 1 8
MSB
High Order
— — Address0 — — — — — — — — — — — — — o — —
Low Order LSB
— — Address] — — — — — — — — — — — — — —— o — —— —
e A e e e o e
MSB = Most Significant Bit
LSB = Least Significant Bit
Decimal Data
2 Binary Coded Decimal Digits= 1 Byte
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
MSD
BCDO BCD 1 LSD BCD 2 BCD 3
BCD 4 BCD 5 BCD 6 BCD 7

MSD = Most Significant Digit
LSD = Least Significant Digit

Figure 2-2. Data Organization In Memory (Sheet 2 of 2)
2.5 ADDRESSING

Instructions for the M68000 contain two kinds of information: the type of function to be
performed and the location of the operand(s) on which to perform that function. The
methods used to locate (address) the operand(s) are explained in the following
paragraphs.

Instructions specify an operand location in one of three ways:
® Register Specification — the number of the register is given in the register field of
the instruction.
® Effective Address — use of the different effective address modes.
® Implicit Reference — the definition of certain instructions implies the use of
specific registers.

13

7 6 B

Bit Data 1 Byte=48 Bits
4 3

2 1

0

Ll

I

| | |

|

7 6 5

4 3

Integer Data 1 Byte=18 Bits

2 1

Byte 0

Lower Addresses

Byte 1

Byte2

Byte 3

Higher Addresses

1 Word=2 Bytes= 16 Bits

Byte 0 {MS Bytel

Byte 1{LS Bytel

Word0

Lower Addresses

Byte 0 (MS Bytel

Byte 1 (LS Byte)

Word 1

Higher Addresses

1 Long Word = 2 Words = 4 Bytes= 32 Bils

Lower Addresses

. Byle O High Order
Byte | Word
————— Long Word0 —
Byte2 Low Order
Byte 3 Word
Byte 0 High Order
Byte 1 Word
f—— LongWord 1 e
Byte2 Low Order
Byte3 Word

Higher Addresses

2.6 INSTRUCTION FORMAT

Figure 2-3. Memory Data Organization of the MC68008

Instructions are from one to five words in length as shown in Figure 2-4, The length of the
instruction and the operation to be performed is specified by the first word of the instruc-
tion which is called the operation word. The remaining words further specify the
operands. These words are either immediate operands or extensions to the effective ad-
dress mode specified in the operation word.

14

Even Bytes (AQ0=0) Odd Bytes {AQ=1}

Operation Word
[First Word Specifies Operation and Modes)

Immediate Operand
(If Any, One or Two Words)

Source Effective Address Extension
(If Any, One or Two Words)

Destination Effective Address Extension
{If Any, One or Two Words)

Figure 2-4. Instruction Format

2.7 PROGRAM/DATA REFERENCES

The M68000 separates memory references into two classes: program references and
data references. Program references, as the name implies, are references to that section
of memory that contains the program being executed. Data references refer to that sec-
tion of memory that contains data. Generally, operand reads are from the data space. All
operand writes are to the data space.

2.8 REGISTER NOTATION

Appendix B contains a definition of the register transfer language (RTL) used in describ-
ing instruction operations. The RTL description of registers identifies the registers as
follows:

An — Address Register (n specifies the register number)

Dn — Data Register (n specifies the register number)

Rn — Any Register, Address or Data (n specifies the register number)

PC — Program Counter

SR — Status Register

CCR — Condition Code Half of the Status Register

SP — The Active Stack Pointer (either user or supervisor)

USP — User Stack Pointer

SSP — Supervisor Stack Pointer

d — Displacement Value

N — Operand Size in Bytes (1, 2, 4)

2.9 ADDRESS REGISTER INDIRECT NOTATION

When an address register is used to point to a memory location, the addressing mode is
called address register indirect. The term indirect is used because the operation of the in-
struction is not directed to the address itself, but to the memory location pointed to by
the adddress register. The RTL symbol for the indirect mode is an address register
designation in parenthesis.

15

2.10 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

2.11 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field
in the operation word. For example, Figure 2-5 shows the general format of the single ef-
fective address instruction operation word. The effective address is composed of two
3-bit fields: the mode field and the register field. The value in the mode field selects the
different address modes. The register field contains the number of a register.

The effective address field may require additional information to fully specify the
operand. This additional information, called the effective address extension, is contain-
ed in a following word or words and is considered part of the instruction as shown in
Figure 2-4. The effective address modes are grouped into three categories: register
direct, memory addressing, and special.

Even Byte Odd Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Effective Address
Maode | Register

Figure 2-5. Single-Effective-Address-Instruction Operation — General Format

2.11.1 REGISTER DIRECT MODES. These effective addressing modes specify that the
operand is in one of the 16 multifunction registers.

2.11.1.1. Data Register Direct. The operand is in the data register specified by the effec-
tive address register field.

Generation: EA=Dn
Assembler Syntax: Dn
Mode: 000
Register: n

Operand

Data Register Dn

2.11.1.2. Address Register Direct. The operand is in the address register specified by the
effective address register field.

Generation: EA = An
Assembler Syntax: An
Mode: 001
Register: n

Operand

Address Register An

16

2.11.2 MEMORY ADDRESS MODES. These effective addressing modes specify that the
operand is in memory and provide the specific address of the operand.

2.11.2.1 Address Register Indirect. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the ex-
ception of the jump and jump to subroutine instructions.

Generation: EA=(An)

Assembler Syntax: (An)

Mode 010

Register n 31 0

Address Register An Memory Address

L
Memory Address Operand

2.11.2.2 Address Register Indirect With Postincrement. The address of the operand is in
the address register specified by the register field. After the operand address is used, it
is incremented by one, two, or four depending upon whether the size of the operand is
byte, word, or long word. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack pointeron a
word boundary. The reference is classified as a data reference.

Generation: EA =(An)
An=An+N Mode: 011

Assembler Syntax: (An)+ Register: n

31 0
Address Register An Memory Address
Operand Length (1, 2, or 4)

_ Y
Memory Address Operand

2.11.2.3 Address Register Indirect With Predecrement. The address of the operand is in
the address register specified by the register field. Before the operand address is used, it
is decremented by one, two, or four depending upon whether the operand size is byte,
word, or long word. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack pointer on a
word boundary. The reference is classified as a data reference.

Generation: An=An-N
EA=(An) Mode: 100
Assembler Syntax: —(An) Register: n

17

31 0

Address Register An I Memory Address I
Operand Length (1, 2, or 4) —-—é—T

y
Memory Address | Operand

2.11.2.4 Address Register Indirect With Displacement. This address mode requires one
word of extension. The address of the operand is the sum of the address in the address
register and the sign-extended 16-bit displacement integer in the extension word. The
reference is classified as a data reference with the exception of the jump and jump to
subroutine instructions.

Generation: EA=(An)+d

Assembler Syntax: dig(An)

Mode: 101 31 0
Register: n

Memory Address
15 0

Displacement Sign Extended Integer |——

Address Register An

Memory Address Operand

2.11.2.5 Address Register Indirect With Index. This address mode requires one word of
extension formatted as shown below.

Even Byte Odd Byte
7 6 5 4 3 2 1 0]7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D/A| Register [(W/L{ 0 | 0 | O Displacement Integer

Bit 15 — Index Register Indicator
0 — data register
1 — address register
Bits 14 through 12 — Index Register Number
Bit 11 — Index Size
0 — sign-extended, low order integer in index register
1 — long value in index register

The address of the operand is the sum of the address in the address register, the sign-
extended displacement integer in the low order eight bits of the extension word, and the
contents of the index register. The reference is classified as a data reference with the ex-
ception of the jump and jump to subroutine instructions. The size of the index register
does not affect the execution time of the instructions.

Generation: EA =(An)+ (Ri)+d Mode: 110
Assembler Syntax: dg(An, Rn.W) Register: n
dg(An, Rn.L)

18

31 0

Address Register An Memory Address
7 0

Extension Word [Sign Extended Integer

Index Register Sign Extended Integer

Memory Address Operand

2.11.3 SPECIAL ADDRESS MODES. The special address modes use the effective address
register field to specify the special addressing mode instead of a register number.

2.11.3.1 Absolute Short Address. This address mode requires one word of extension. The
address of the operand is in the extension word. The 16-bit address is sign extended
before it is used. The reference is classified as a data reference with the excepion of the
jump and jump to subroutine instructions.
Generation: EA given

Assembler Syntax: xxx.W L 0
Mode: 111 Extension Word |Sign-Extended Memory AddressJ
Register: 000
A
Memory Address Operand

2.11.3.2 Absolute Long Address. The address mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The
high-order part of the address is the first extension word; the low order part of the ad-
dress is the second extension word. The reference is classified as a data reference with
the exception of the jump and jump to subroutine instructions.

Generation: EA given
Assembler Syntax: xxx.L 15 0
Mode: 111 . ; :
Register: 001 First Extension Word | Address High |
15 0
Second Extension Word Address Low
31 v ’ 0
Concatenation

Y
Memory Address | Operand

19

2.11.3.3 Program Counter With Displacement. This address mode requires one word of
extension. The address of the operand is the sum of the address in the program counter
and the sign-extended 16-bit displacement integer in the extension word. The value in the
program counter is the address of the extension word. The reference is classified as a
program reference.

Generation: EA=(PC)+d

Assembler Syntax: LABEL (PC)

Mode: 111

Register: 010 31 0

Address of Extension Word
Program Counter

15 0
Sign Extended Integer

Extension Word

Memory Address Operand

2.11.3.4 Program Counter With Index. This address mode requires one word of extension
formatted as shown below.

g Even Byte 0Odd Byte

S 7 6 5 4 3 2 1 7 6 5 4 3 2 1 0

" 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D/A| Register |WIL| 0|0 | O Displacement Integer

Bit 15 — Index Register Indicator
0 — data register
1 — address register
Bits 14 through 12 — Index Register Number
Bit 11 — Index Size
0 — sign-extended, low order word integer in index register
1 — long value in index register

The address is the sum of the address in the program counter, the sign-extended
displacement integer in the lower eight bits of the extension word, and the contents of
the index register. The value in the program counter is the address of the extension word.
This reference is classified as a program reference. The size of the index register does
not affect the execution time of the instruction.

Generation: EA=(PC)+ (Ri)+d

Assembler Syntax: LABEL (PC, Rn.W)
LABEL (PC, Rn.L)

Mode: 111

Register: 011

20

31 0
Address of Extension Word

Program Counter

7 0
Extension Word Sign Extended Integer
Index Register Sign Extended Integer
Memory Address Operand

2.11.3.5 Immediate Data. This address mode requires either one or two words of exten-
sion depending on the size of the operation.
Byte Operation — operand is low order byte of extension word
Word Operation — operand is extension word
Long Word Operation — operand is in the two extension words, high order 16-bits are
in the first extension word, low order 16 bits are in the second extension word.

Generation: Operand given
Assembler Syntax: #xxxx

Mode: 111

Register: 100

The extension word formats are shown below:

Even Byte Odd Byte
7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 O Byte
or
Word
or
High Order
LongWord - —————————— — —— — — — oo —— ———
Low Order

2.11.4 EFFECTIVE ADDRESS ENCODING SUMMARY. Table 2-1is a summary of the effec-
tive addressing modes discussed in the previous paragraphs.

2.12 IMPLICIT REFERENCE
Some instructions make implicit reference to the program counter (PC), the system stack

pointer (SP), the supervisor stack pointer (SSP), the user stack pointer (USP), or the status
register (SR). Table 2-2 provides a list of these instructions and the registers implied.

21

Table 2-1. Effective Address

Encoding Summary

Addressing Mode Maode Register
Data Register Direct 000 register number
Address Register Direct i) register number
Address Register Indirect 010 register number
Address Register Indirect with Postincrement 011 register number
Address Register Indirect with Predecrement 100 register number
Address Register Indirect with Displacement 101 register number
Address Register Indirect with Index 10 register number

Absolute Short IEK 000
Absolute Long 11 001
Program Counter with Displacement 111 010
Program Counter with Index 11 K
Immediate Rl 00

Table 2-2. Implicit Instruction Reference Summary

Instruction Implied Register(s)
Branch Conditional (Bee), Branch Always (BRA) PC
Branch to Subroutine (BSR) PC, SP
Check Register Against Bounds (CHK) S5P, 5R
Test Condition, Decrement and Branch (DBecc) PC
Signed Divide (DIVS) S5P, SR
Unsigned Divide (DIVU) SSP, SR
Jump (JMP) PC
Jump 1o Subroutine (JSR) PC, 5P
Link and Allocate (JSR) PC. 5P
Move Condition Codes (MOVE CCRI SR

Maove Control Register (IMOVEC)

VBR, SFC, DFC

Move Alternate Address Space IMOVES) SFC, DFC
Mave Status Register IMOVE SR SR
Move User Stack Pointer (MOVE USP) USP
Push Effective Address (PEA) SP
Return and Deallocate (RTD) PC. 5P
Return from Exception (RTE) PC, SP, SR
Return and Restore Condition Codes (RTR) PC, SP, SR
Return from Subroutine (RTS) PC, 5P
Trap (TRAP) SSP, SR
Trap on Overflow [TRAPV) SSP, SR
Unlink (UNLK) SF
Logical Immediate to CCR SR
Logical Immediate 10 SR SR

2.13 STACK AND QUEUES

22

In addition to supporting the array data structure with the index addressing mode, the
M68000 also supports stack and queue data structures with the address register indirect
postincrement and predecrement addressing modes. A stack is a last-in-first-out (LIFO)
list, a queue is a first-in-first-out (FIFO) list. When data is added to a stack or queue, it is
“pushed” onto the structure; when it is removed, it is “pulled” from the structure.

The system stack is used implicitly by many instructions; user stacks and queues may be
created and maintained through the addressing modes.

2.13.1 SYSTEM STACK. Address register seven (A7) is the system stack pointer (SP). The
system stack pointer is either the supervisor stack pointer (SSP) or the user stack pointer
(USP), depending on the state of the S bit in the status register. If the S bit indicates

supervisor state, the SSP is the active system stack pointer and the USP cannot be
referenced as an address register. If the S bit indicates user state, the USP is the active
system stack pointer and the SSP cannot be referenced. Each system stack fills from
high memory to low memory. The address mode —(SP) creates a new item on the active
system stack and the address mode (SP) + deletes an item from the active system stack.

The program counter is saved on the active system stack on subroutine calls and
restored from the active system stack on returns. On the other hand, both the program
counter and the status register are saved on the supervisor stack during the processing
of traps and interrupts. Thus, the correct execution of the supervisor state code is not
dependent on the behavior of user code and user programs may use the user stack
pointer arbitrarily.

In order to keep data on the system stack aligned properly, data entry on the stack is
restricted so that data is always put in the stack on a word boundary. Thus, byte data is
pushed on or pulled from the system stack in the high half of the word; the lower half is
unchanged.

2.13.2 USER STACKS. User stacks can be implemented and manipulated by employing
the address register indirect with postincrement and predecrement addressing modes.
Using an address register (one of A0 through AB), the user may implement stacks which
are filled either from high memory to low memory, or vice versa. The important things to
remember are:

® using predecrement, the register is decremented before its contents are used as the
pointer into the stack;

® using postincrement, the register is incremented after its contents are used as the
pointer into the stack;

® byte data must be put on the stack in pairs when mixed with word or long data so
that the stack will not get misaligned when the data is retrieved. Word and long ac-
cesses must be on word boundary (even) addresses.

Stack growth from high to low memory is implemented with
—(An) to push data on the stack,
(An)+ to pull data from the stack.

After either a push or a pull operation, register An points to the last (top) item on the

stack. This is illustrated as:

Low Memory
(Free)

An — Top of Stack
Bottom of Stack
High Memory

23

Stack growth from low to high memory is implemented with
(An)+ to push data on the stack,
—(An) to pull data from the stack.

After either a push or pull operation, register An points to the next available space on the
stack. This is illustrated as:

Low Memory

Bottom of Stack

F] 7

Top of Stack

An —»| (Free)

High Memory

2.13.3 QUEUES. User queues can be implemented and manipulated with the address
register indirect with postincrement or predecrement addressing modes. Using a pair of
address registers (two of A0 through AB), the user may implement queues which are filled
either from high memory to low memory, or vice versa. Because queues are pushed from
one end and pulled from the other, two registers are used: the put and get pointers.

Queue growth from low to high memory is implelmented with
(An)+ to put data into the queue,
(An)+ to get data from the queue.

After a put operation, the put address register points to the next available space in the
queue and the unchanged get address register points to the next item to remove from the
queue. After a get operation, the get address register points to the next item to remove
from the queue and the unchanged put address register points to the next available
space in the queue. This is illustrated as:

Low Memory
Last Get (Free)

Get (An)+ —> Next Get

Last Put
Put (An)+ —> (Free)

High Memory

24

If the queue is to be implemented as a circular buffer, the address register should be
checked and, if necessary, adjusted before the put or get operation is performed. The ad-
dress register is adjusted by subtracting the buffer length (in bytes).

Queue growth from high to low memory is implemented with
— (An) - to put data into the queue,
—(An) - to get data from the queue.

After a put operation, the put address register points to the last item put in the queue and
the unchanged get address register points to the last item removed from the queue. After
a get operation, the get address register points to the last item removed from the queue
and the unchanged put address register points to the last item put in the queue. This is il-
lustrated as:

Low Memory
(Free)

Put —(An) — Last Put

S : 7

Next Get

Get (- An)— Last Get (Free)

High Memory

If the queue is to be implemented as a circular buffer, the get or put operation should be
performed first, and then the address register should be checked and, if necessary, ad-
justed. The address register is adjusted by adding the buffer length (in bytes).

25

SECTION 3
INSTRUCTION SET SUMMARY

3.1 INTRODUCTION

This section contains an overview of the form and structure of the M68000 architecture
instruction set. The instructions form a set of tools that include all the machine functions
to perform the following operations:
® Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined with the flexible addressing
modes described in Section 2 provide a very flexible base for program development.
Detailed information about each instruction is given in Appendix B. Instructions
available only on the MCB8010 or which behave differently on the MC68010 are
highlighted.

3.2 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move
(MOVE) instruction. The move instruction and the effective addressing modes allow both
address and data manipulation. Data move instructions allow byte, word, and long word
operands to be transferred from memory to memory, memory to register, register to
memory, and register to register. Address move instructions allow word and long word
operand transfers and ensure that only legal address manipulations are executed. In ad-
dition to the general move instruction, there are several special data movement instruc-
tions: move multiple registers (MOVEM), move peripheral data (MOVEP), exchange
registers (EXG), load effective address (LEA), push effective address (PEA), link stack
(LINK), unlink stack (UNLK), and move quick (MOVEQ). Table 3-1is a summary of the data
movement operations.

3.3. INTEGER ARITHMETIC OPERATIONS
The arithmetic operations include the four basic operations of add (ADD), subtract (SUB),

multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP), clear (CLR), and
negate (NEG). The add and subtract instructions are available for both address and data

27

operations, with data operations accepting all operand sizes. Address operations are
limited to legal address size operands (16 or 32 bits). Data, address, and memory com-
pare operations are also available. The clear and negate instructions may be used on all
sizes of data operands.

Table 3-1. Data Movement Operations

Instruction Operand Size Operation Instruction | Operand Size Dperation
EXG 32 Rx =Ry diAn) —DOn
LEA 2 FA— An MEMEP 19,22 Dn— dlAn)
{An)— —(SP) MOVEQ 8 #xxx— Dn
LINK (SP)=An PEA 32 EA— - (SP)
{SP) + displacement — SP SWAP 32 Dn(31:16] = Dnl15:0]
MOVE 8, 16, 32 [Et:Js]—- f:Ad UNLK {Anl—Sp
ni—=Lr = (SPI+ —An
MOVEC 32 g
(EA] — An, Dn NOTES:
MOVEM 16, 32 (An, Dn) — EA s=source —{)=indirect with predecrement
EA—Fn d = destination [)+ =indirect with postdecrement
MOVES 8, 16, 32 (Rn) — EA [1=bit numbers #=immediate data

Cr= Control Register

The multiply and divide operations are available for signed and unsigned operands using
word multipy to produce a long product and a long word dividend with word divisor to pro-
duce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended
instructions. These instructions are: add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition codes as a result of a compare
of the operand with zero is also available. Test and set (TAS) is a synchronization instruc-
tion useful in multiprocessor systems. Table 3-2 is a summary of the integer arithmetic
operations.

3.4 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of in-
teger data operands. A similar set of immediate instructions (ANDI, ORI, and EORI) pro-
vide these logical operations with all sizes of immediate data. Table 3-3 is a summary of
the logical operations.

3.5 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR and
ASL and logical shift instructions LSR and LSL. The rotate instructions (with and without
extend) available are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be
performed in either registers or memory. Register shifts and rotates support all operand
sizes and allow a shift count specified in the instruction of one or eight bits, or 0 to 63
bits specified in a data register.

28

Memory shifts and rotates are for word operands only and allow single-bit shifts or
rotates.

Table 3-4 is a summary of the shift and rotate operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Size Operation
8, 16, 32 Dn+ (EAl—Dn
(EA)+ Dn— (EA)
ARl (EA) + #xxx— [EA)
16, 32 An+ (EAl— An
8, 16, 32 Dx+ Dy + X— Dx
ADDX 16, 32 — Ak} 4+ — (Ay) + X— (Ax)
CLR 8, 16, 32 0—EA
8, 16, 32 Dn— (EA)
[EA) = Fxxx
cmp (Ax)+ = Ay +
16, 32 An—(EA)
DIVS 32+ 16 Dn = (EA)—Dn
DIVU 32+ 16 Dn =+ (EA)—Dn
8—16 (Dnlg— Dn1g
EXT 16— 32 {Dnlyg— Dn3z
MULS 16 16—32 Dnx (EA}—Dn
MULU 16x 16— 32 Dn x (EA)—Dn
NEG 8, 16, 32 0- (EA)— (EA)
NEGX 8, 16, 32 0-{EA} = X— (EA)
8, 16, 32 Dn—(EA)—Dn
(EA)~ Dn— (EA}
SR [EA) — dxxx— (EA)
16, 32 An— (EAl= An
Dx—Dy—X—Dx
SUBA 8,16, 32 — (AR = — Ay} = X— (Ax)
TAS 8 [EA)-0, 1— EA[7]
TST 8, 16, 32 (EA)-0
NOTES:

[1=bit number

= |=indirect with predecrement
{)+ = indirect with postdecrement
#=immediate data

Table 3-3. Logical Operations

Instruction Operand Size Operation
DnAlEA}— Dn
AND 8, 16, 32 {EAIADn— (EA]

(EAIASxx— (EA]
On v (EA)—Dn

CR 8, 186, 32 (EA) v Dn—(EA)
(EA) v #xxx—= [EA}
(EA] & Dy —I(EA)

EOR 8.16, 32 (EA) B #xxx—(EA)
NOT 8, 16, 32 —(EA)—(EA)
NOTES
- = invert V = logical OR
=immediate data @ = logical exclusive OR

A= logical AND

29

Table 3-4. Shift and Rotate Operations

Instruc-|Operand Opération

tion Size

ASR |8, 16, 32 ‘
LSL [& 6. 32 0

LSR |8.16.32 0
ROL [8.16.32| [C l.

ROR |8. 16, 32
ROXL [8. 16, 32
Rox |5, 16, 32

3.6 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test
(BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG).

Table 3-56 is a summary of the bit manipulation operations.

Table 3-5. Bit Manipulation Operations

Instruction Operand Size Operation
BTST 8, 32 ~bit of (EA)—2Z
~bit of (EA) —2Z
Bsel sl 1 — bit of EA
~bit of (EA)—Z
BeLR 8,32 0—=bit of EA
~bit of [EA)—Z
BCHG 8,22 ~ bit of [EA)—bit of EA
NOTE: -~ =invert

3.7 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplish-
ed using the following instructions: add decimal with extend (ABCD), subtract decimal
with extend (SBCD), and negate decimal with extend (NBCD). Table 3-6 is a summary of

the binary coded decimal operations.

Table 3-6. Binary Coded Decimal Operations

Instruction O%E'rand Operation
1ze

Dx1g+ Dy1g+ X — Dx
#BL0 8 —1Axhg+ = (Ayhg+ X —[Ax)

Dx1g—Dyip—X—Dx
L1 8 —Axhg= = {Aylig—*— (Ax)
NBCD 8 0-(EA)jg— X—IEA)

NOTE: =1 }=indirect with predecrement

3.8 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditionai and uncondi-
tional branch instructions and return instructions. These instructions are summarized in
Table 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC — Carry Clear LS — Low or Same
CS — Carry Set LT — Less Than

EQ — Equal Ml — Minus

F — Never True NE — Not Equal

GE — Greater or Equal PL — Plus

GT — Greater Than T — Always True
HlI — High VC — Overflow Clear
LE — Less or Equal VS — Overflow Set

Table 3-7. Program Control Operations

Instruction Operation
Conditional
Bee Branch Conditionally 114 Conditions)
8- and 16-Bit Displacement
DBee Test Condition, Decrement, and Branch
16-8it Displacement
Sce Set Byte Conditionally (16 Conditions)
Unconditional
BRA Branch Always
8- and 16-Bit Displacement
BSR Branch to Subroutine
8- and 16-Bit Displacemant
JMP Jump
JSR Jump to Subroutine
Returns
RTD Return from Subroutine and I
and Deallocate Stack
RTR Return and Restore Condition Codes
RTS Return from Subrouting

31

3.9 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the status register. These in-
structions are summarized in Table 3-8. In the MC68010, the MOVE from SR instruction
has been made privileged and the MOVE from CCR instruction has been added. See SEC-
TION 4 EXCEPTION PROCESSING.

Table. 3-8. System Control Operations

Instruction Operation
Privileged
ANDI to SR Logical AND to Status Register
ECRI to SR Logical EOR to Status Register

MOVE EA to SR
MOVE SR to EA

Load New Status Register
Store Status Register

MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVES Move Alternate Address Space
ORIl 10 SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Exception
STOP Stop Program Execution

Trap Generating
CHK Check Data Register Against Upper Bounds
TRAP Trap
TRAPV Trap on Overflow

Condition Code Register
ANDI to CCR Logical AND to Condition Codes
EORI to CCR Logical EOR to Condition Codes

MOWVE EA to CCR
MOVE CCR to EA
ORI to CCR

Load New Condition Codes
Store Condition Codes
Logical OR 1o Condition Codes

32

SECTION 4
EXCEPTION PROCESSING

4.1 INTRODUCTION

This section describes the actions of the M68000 which are outside the normal process-
ing associated with the execution of instructions. The functions of the bits in the super-
visor portion of the status register are covered: the supervisor/user bit, the trace enable
bit, and the processor priority mask. Finally, the sequence of memory references and ac-
tions taken by the processor on exception conditions is detailed.

The processor is always in one of three processing states: normal, exception, or halted.
The normal processing state is that associated with instruction execution; the memory
references are to fetch instructions and operands, and to store results. A special case of
the normal state is the stopped state which the processor enters when a STOP instruc-
tion is executed. In this state, no further memory references are made.

An additional special case of the normal state exists in the MC68010, the loop mode,
which may be entered when a DBcc instruction is executed. In loop mode, only operand
fetches occur. See APPENDIX G MC68010 LOOP MODE OPERATION.

The exception processing state is associated with interrupts, trap instructions, tracing,
and other exceptional conditions. The exception may be internally generated by an in-
struction or by an unusual condition arising during the execution of an instruction. Exter-
nally, exception processing can be forced by an interrupt, by a bus error, or by a reset. Ex-
ception processing is designed to provide an efficient context switch so that the pro-
cessor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For exam-
ple, if during the exception processing of a bus error another bus error occurs, the pro-
cessor assumes that the system is unusable and halts. Only an external reset can restart
a halted processor. Note that a processor in the stopped state is not in the halted state,
nor vice versa.

4.2 PRIVILEGE STATES

The processor operates in one of two states of privilege: the user state or the supervisor
state. The privilege state determines which operations are legal, are used by the external
memory management device to control and translate accesses, and are used to choose
between the supervisor stack pointer and the user stack pointer in instruction
references.

33

The privilege state is a mechanism for providing security in a computer system.
Programs should access only their own code and data areas and ought to be restricted
from accessing information which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user
state. In this state, the accesses are controlled and the effects on other parts of the
system are limited. The operating system executes in the supervisor state, has access to
all resources, and performs the overhead tasks for the user state programs.

4.2.1 SUPERVISOR STATE. The supervisor state is the higher state of privilege. For in-
struction execution, the supervisor state is determined by the S bit of the status register;
if the S bit is asserted (high), the processor is in the supervisor state. All instructions can
be executed in the supervisor state. The bus cycles generated by instructions executed
in the supervisor state are classified as supervisor references. While the processoris in
the supervisor privilege state, those instructions which use either the system stack
pointer implicitly or address register seven explictly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the state of the
S bit when the exception occurs. The bus cycles generated during exception processing
are classified as supervisor references. All stacking operations during exception pro-
cessing use the supervisor stack pointer.

4.2.2 USER STATE. The user state is the lower state of privilege. For instruction execu-
tion, the user state is determined by the S bit of the status register; if the S bit is negated
(low), the processor is executing instructions in the user state.

Most instructions execute identically in user state and in the supervisor state. However,
some instructions which have important system effects are made privileged. User pro-
grams are not permitted to execute the STOP instruction or the RESET instruction. To en-
sure that a user program cannot enter the supervisor state except in a controlled manner,
the instructions which modify the whole status register are privileged. To aid in debugg-
ing programs which are to be used as operating systems, the move to user stack pointer
(MOVE to USP) and move from user stack pointer (MOVE from USP) instructions are also
privileged.

To implement virtual machine concepts in the MC68010, the move from status register
(MOVE from SR), move to/from control register (MOVEC), and move alternate address
space (MOVES) instructions are also privileged.

The bus cycles generated by an instruction executed in user state are classified as user
state references. This allows an external memory management device to translate the
address and the control access to protected portions of the address space. While the
processor is in the user privilege state, those instructions which use either the system
stack pointer implicitly or address register seven explicitly access the user stack pointer.

34

4.2.3 PRIVILEGE STATE CHANGES. Once the processor is in the user state and ex-
ecuting instructions, only exception processing can change the privilege state. During
exception processing, the current state of the S bit of the status register is saved and the
S bit is asserted, putting the processor in the supervisor state. Therefore, when instruc-
tion execution resumes at the address specified to process the exception, the processor
is in the supervisor privilege state.

The transition from supervisor to user state can be accomplished by any of four instruc-
tions: return from exception (RTE), move to status register (MOVE word to SR), AND im-
mediate to status register (ANDI to SR), and exclusive OR immediate to status register
(EORI to SR). The RTE instruction fetches the new status register and program counter
from the supervisor stack, loads each into its respective register, and then begins the in-
struction fetch at the new program counter address in the privilege state determined by
the S bit of the new contents of the status register. The MOVE, ANDI, and EORI to status
register instructions each fetch all operands in the supervisor state, perform the ap-
propriate update to the status register, and then fetch the next instruction at the next se-
qguential program counter address in the privilege state determined by the new S bit.

4.2.4 REFERENCE CLASSIFICATION. When the processor makes a reference, it
classifies the kind of reference being made, using the encoding of the three function
code output lines. This allows external translation of addresses, control of access, and
differentiation of special processor states, such as interrupt acknowledge. Table 4-1 lists
the classification of references.

Table 4-1. Reference Classification

Function Code Output Reference Class
FC2 FC1 FCO

0 0 0 (Unassigned)

0 Q User Data

0 1 0 User Program

0] 1 1 {Unassigned)

1 0 0 IUnassigned)

1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 Interrupt Acknowledge

4.3 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of
exception processing is in order. The processing of an exception occurs in four steps.
with variations for different exception causes. During the first step, a temporary copy of
the status register is made and the status register is set for exception processing. In the
second step the exception vector is determined and the third step is the saving of the cur-
rent processor context. In the fourth step a new context is obtained and the processor
switches to instruction processing.

4.3.1 EXCEPTION VECTORS. Exception vectors are memory locations from which the
processor fetches the address of a routine which will handle that exception. All excep-
tion vectors are two words in length (Figure 4-1) except for the reset vector, which is four
words. All exception vectors lie in the supervisor data space except for the reset vector

35

which is in the supervisor program space. A vector number is an 8-bit number which,
when multiplied by four, gives the offset of an exception vector. Vector numbers are
generated internally or externally, depending on the cause of the exception. In the case
of interrupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit
vector number (Figure 4-2) to the processor on data bus lines DO through D7.

The processsor forms the vector offset by left-shifting the vector number two bit posi-
tions and zero-filling the upper order bits to obtain a 32-bit long word vector offset. In the
case of the MC68000 and MC68008, this offset is used as the absolute address to obtain
the exception vector itself. This is shown in Figure 4-3.

In the case of the MC68010, the vector offset is added to the 32-bit vector base register
(VBR) to obtain the 32-bit absolute address of the exception vector. This is shown in
Figure 4-4. Since the VBR is set to zero upon reset, the MC68010 will function identically
to the MC68000 and MC68008 until the VBR is changed via the MOVEC instruction.

Even Bytes (A0=0) Odd Bytes (AD=1}
Word 0 New Program C]ounte: {High) A1=0
Word 1 New Program Counter (Low) Al=1

Figure 4-1. Exception Vector Format

D15 D8 D7 DO

Ignored w7 | vB [vB | wd | w3 w2 | vl | w0

Where
v7 15 the MSB of the Vector Number
v0 is the LSB of the Vector Number

Figure 4-2. Peripheral Vector Number Format

A3 A1D A3 AB A7 AB AB A4 A3 A2 Al AD

All Zeroes vi|vB | vB | vd| VB |vZ| w1 | w0 O] O

Figure 4-3. Address Translated from 8-Bit Vector Number (MC68000, MC68008)

31 0

Contents of Vector Base Register

31 10 0

All Zeroes vi|wvE|vD [vd | v3|v2 w1 | WO 0|0

Excepticn Vector
Address

Figure 4-4. Exception Vector Address Calculation (MC68010)

36

The actual address output on the address bus is truncated to the number of address bits
available on the bus of the particular implementation of the M68000 architecture. In the
case of the MC68000 and the MC68010, this is 24 bits. In the case of the MC68008, the ad-
dress is 20 bits in length. The memory map for exception vectors is given in Table 4-2.

Table 4-2. Exception Vector Assignment

Vector Address Adkigtiinent
Number(s) Dec Hex Space
0 0 000 SP |Reset: Initial SSPZ
1 4 004 SP | Reset: Initial PC2
2 8 008 SC |Bus Error
3 12 0oc SD |Address Error
4 16 010 5D |lllegal Instruction
5 20 014 SD |Zero Divide
6 24 018 SO |CHK Instruction
7 28 01C SD |TRAPV Instruction
8 32 020 SD |Privilege Violation
9 36 024 SD |Trace
10 40 028 SD |Line 1010 Emulator
1 44 02C SD |Line 1111 Emulator
121 48 030 SD |lUnassigned, Reserved)
131 52 034 SD |{Unassigned, Reserved)
14 56 038 SD | Format Errar® I
15 60 03C S0 |Uninitialized Interrupt Vector
16-231 64 040 SD |{Unassigned, Reserved]
95 05F -
24 9% 060 SD | Spurious Interrupt3
25 100 064 SD [Level 1 Interrupt Autovector
26 104 068 SD |Level 2 Interrupt Autovector
27 108 06C SD |[Level 3 Interrupt Autovector
28 112 070 SD |Level 4 Interrupt Autovector
29 116 074 SD |[Level 5 Interrupt Autovector
30 120 078 SD |Level & Interrupt Autovector
<) 124 07C SD_ |Level 7 Interrupt Autovector
22.47 128 080 SD | TRAP Instruction Vectors®
19 0BF
192 0Cco SD |{Unassigned, Reserved)
16081 255 OFF =
256 100 SD |User Interrupt Vectors
s 1023 3FF =
NOTES:

. Vector numbers 12, 13, 16 through 23, and 48 through 63 are reserved for
future enhancements by Motorola. No user peripheral devices should be
assigned these numbers.

2. Reset vector (0) requires four words, unlike the other vectors which only re-

quire two words, and is located in the supervisor program space.

3. The spurious interrupt vector is taken when there is a bus error indica-

tion during interrupt processing. Refer to Paragraph 4.4.2.

4. TRAP #n uses vector number 324 n.

. MCB8010 only. See Return from Exception Section.

This vector is unassigned, reserved on the MCB8000, and MCE8008.

o

As shown in Table 4-2, the memory layout is 512 words long (1024 bytes). It starts at ad-
dress 0 (decimal) and proceeds through address 1023 (decimal). This provides 255 unique
vectors; some of these are reserved for TRAPS and other system functions. Of the 255,
there are 192 reserved for user interrupt vectors. However, there is no protection on the
first 64 entries, so user interrupt vectors may overlap at the discretion of the systems
designer.

37

4.3.2. KINDS OF EXCEPTONS. Exceptions can be generated by either internal or external
causes. The externally generated exceptions are the interrupts and the bus error and
reset requests. The interrupts are requests from peripheral devices for processor action
while the bus error and reset inputs are used for access control and processor restart.
The internally generated exceptions come from instructions, or from address errors, or
tracing. The trap (TRAP), trap on overflow (TRAPV), check register against bounds (CHK),
and divide (DIV) instructions all can generate exceptions as part of their instruction ex-
ecution. In addition, illegal instructions, word fetches from odd addresses, and privilege
violations cause exceptions. Tracing behaves like a very high priority, internally
generated interrupt after each instruction execution.

4.3.3. MULTIPLE EXCEPTIONS. These paragraphs describe the processing which occurs
when multiple exceptions arise simultaneously. Exceptions can be grouped according to
their occurrence and priority. The group 0 exceptions are reset, bus error, and address er-
ror. These exceptions cause the instruction currently being executed to be aborted and
the exception processing to commence within two clock cycles. The group 1 exceptions
are trace and interrupt, as well as the privilege violations and illegal instructions. These
exceptions allow the current instruction to execute to completion, but preempt the ex-
ecution of the next instruction by forcing exception processing to occur (privilege viola-
tions and illegal instructions are detected when they are the next instruction to be ex-
ecuted). The group 2 exceptions occur as part of the normal processing of instructions.
The TRAP, TRAPV, CHK, and zero divide exceptions are in this group. For these excep-
tions, the normal execution of an instruction may lead to exception processing.

Group 0 exceptions have highest priority, while group 2 exceptions have lowest priority.
Within group 0, reset has highest priority, followed by bus error and then address error.
Within group 1, trace has priority over external interrupts, which in turn takes priority over
illegal instruction and privilege violation. Since only one instruction can be executed at a
time, there is no priority relation within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if
the conditions for both arise simultaneously. Therefore, if a bus error occurs during a
TRAP instruction, the bus error takes precedence, and the TRAP instruction processing
is aborted. In another example, if an interrupt request occurs during the execution of an
instruction while the T bit is asserted, the trace exception has priority, and is processed
first. Before instruction execution resumes, however, the interrupt exception is also pro-
cessed and instruction processing commences finally in the interrupt handler routine. A
summary of exception grouping and priority is given in Table 4-3.

Table 4-3. Exception Grouping and Priority

Group Exception Processing
0 Reset Exception processing begins within two clock cycles
Address Error
Bus Error
1 Trace Exception processing begins before the next instruction
Interrupt
lilegal
Privilege
2 TRAP, TRAPVY,|Exception processing is started by normal instruction execution
CHK
Zero Divide

38

4.3.4 EXCEPTION STACK FRAMES. Exception processing saves the most volatile portion
of the current processor context on the top of the supervisor stack. This context is
organized in a format called the exception stack frame. Although this information varies
with the particular processor and type of exception, it always includes the status register
and program counter of the processor when the exception occurred.

The amount and type of information saved on the stack is determined by the processor
type and type of exception. Exceptions are grouped by type according to priority of the
exception. The group 0 exceptions include address error, bus error, and reset. The group
2 and 3 exceptions include interrupts, traps, illegal instructions, and trace.

The MC68000 and MC88008 group 1 and 2 exception stack frame is shown in Figure 4-5.
Only the program counter and status register are saved. The program counter points to
the next instruction to be executed after exceptions processing.

The MC68010 exception stack frame is shown in Figure 4-6. The number of words actually
stacked depends on the exception type. Group 0 exceptions (except reset) stack 29
words and group 1 and 2 exceptions stack four words. In order to support generic excep-
tion handlers, the processor also places the vector offset in the exception stack frame.
The format code field allows the RTE (return from exception) instruction to identify what
information is on the stack so that it may be properly restored. Table 4-4 lists the
MC68010 stack format codes. Although some formats are peculiar to a particular M68000
family processor, the format 0000 is always legal and indicates that just the first four
words of the frame are present.

Even Byte Odd Byte

7 017 0
15 0 Higher
S55P—3» Status Register Address
Program Counter High

Pragram Counter Low

Figure 4-5. MC68000, MC68008 Group 1 and 2 Exception Stack Frame

15 0 Higher Addresses

SP— Status Register

Program Counter High

Program Counter Low

Format Vector Offset

Other Infarmation
Depending on Exception

Figure 4-6. MC68010 Stack Frame

39

Table 4-4. MC68010 Format Codes

Format Code Stacked Information
0000 MC6E8010 Short Format (4 Words)
1000 MCE8010 Long Format (29 Words)
All Others Unassigned, Reserved

4.3.5 EXCEPTION PROCESSING SEQUENCE. Exception processing occurs in four iden-
tifiable steps. In the first step, an internal copy is made of the status register. After the
copy is made, the S bit is asserted, putting the processor into the supervisor privilege
state. Also, the T bit is negated, which will allow the exception handler to execute
unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask
is also updated.

In the second step, the vector number of the exception is determined. For interrupts, the
vector number is obtained by a processor fetch and classified as an interrupt
acknowledge. For all other exceptions, internal logic provides the vector number. This
vector number is then used to generate the address of the exception vector. Group 1 and
2 exceptions use a short format exception stack frame (format = 0000 on the MC68010).
Additional information defining the current context is stacked for the bus error and ad-
dress error exceptions.

The third step is to save the current processor status, except for the reset exception. The
current program counter value and the saved copy of the status register are stacked us-
ing the supervisor stack pointer. The program counter value stacked usually points to the
next unexecuted instruction, however for bus error and address error, the value stacked
for the program counter is unpredictable and may be incremented from the address of
the instruction which caused the error. Additional information defining the current con-
text is stacked for the bus error and address error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched
from the exception vector. The processor then resumes instruction execution. The in-
struction at the address given in the exception vector is fetched and normal instruction
decoding and execution is started.

4.4 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is
peculiar to it. The following paragraphs detail the source of exceptions, how each arises,
and how each is processed.

4.4.1 RESET. The reset input provides the highest exception level. The processing of the
reset signal is designed for system initiation and recovery from catastrophic failure. Any
processing in progress at the time of the reset is aborted and cannot be recovered. The
processor is forced into the supervisor state and the trace state is forced off. The pro-
cessor interrupt priority mask is set at level seven. In the MC68010, the vector base
register (VBR) is forced to zero. The vector number is internally generated to reference
the reset exception vector at location 0 in the supervisor program space. Because no

40

assumptions can be made about the validity of register contents, in particular the super-
visor stack pointer, neither the program counter nor the status register is saved. The ad-
dress contained in the first two words of the reset exception vector is fetched as the in-
itial supervisor stack pointer and the address in the last two words of the reset exception
vector is fetched as the initial program counter. Finally, instruction execution is started
at the address in the program counter. The power-up/restart code should be pointed to by
the initial program counter.

The RESET instruction does not cause loading of the reset vector, but does assert the
reset line to reset external devices. This allows the software to reset the system to a
known state and then continue processing with the next instruction.

4.4.2. INTERRUPTS. Seven levels of interrupt priorities are provided. In the MC68000 and
MC68010, all seven levels are available. The MC68008 supports three interrupt levels:
two, five, and seven, level seven being the highest priority. Devices may be chained exter-
nally within interrupt priority levels, allowing an unlimited number of peripheral devices
to interrupt the processor. Interrupt priority levels are numbered from one to seven, level
seven being the highest priority. The status register contains a three-bit mask which in-
dicates the current processor priority and interrupts are inhibited for all priority levels
less than or equal to the current processor priority.

An interrupt request is made to the processor by encoding the interrut request level on
the interrupt request lines; a zero indicates no interrupt request. Interrupt requests arriv-
ing at the processor do not force immediate exception processing, but are made pen-
ding. Pending interrupts are detected between instruction executions. If the priority of
the pending interrupt is lower than or equal to the current processsor priority, execution
continues with the next instruction and the interrupt exception processing is postponed.

If the priority of the pending interrupt is greater than the current processor priority, the
exception processing sequence is started. A copy of the status register is saved, the
privilege state is set to supervisor state, tracing is suppressed, and the processor priority
level is set to the level of the interrupt being acknowledged. The processor fetches the
vector number from the interrupting device, classifying the reference as an interrupt
acknowledge and displaying the level number of the interrupt being acknowledged on the
address bus. If external logic requests automatic vectoring, the processor internally
generates a vector number which is determined by the interrupt level number. If external
logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the
usual exception processing, saving the format/offset word (MC68010 only), program
counter, and status register on the supervisor stack. The offset value in the format/offset
word on the MC68010 is the externally supplied or internally generated vector number
multiplied by four. The format will be all zeroes. The saved value of the program counter
is the address of the instruction which would have been executed had the interrupt not
been present. The content of the interrupt vector whose vector number was previously
obtained is fetched and loaded into the program counter, and normal instruction execu-
tion commences in the interrupt handling routine.

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the in-
terrupt priority mask, thus providing a “non-maskable interrupt” capability. An interrupt
is generated each time the interrupt request level changes from some lower level to level
seven. Note that a level seven interrupt may still be caused by the level comparison if the
request level is a seven and the processor priority is set to a lower level by an instruction.

41

4.4.3 UNINITIALIZED INTERRUPT. An interrupting device asserts VPA, BERR, or provides
and M68000 interrupt vector number and asserts DTACK during an interrupt
acknowledge cycle by the M68000. If the vector register has not been initialized, the
responding M68000 Family peripheral will provide vector number 15, the uninitialized in-
terrupt vector. This provides a uniform way to recover from a programming error.

4.4.4 SPURIOUS INTERRUPT. If during the interrupt acknowledge cycle no device
responds by asserting DTACK or VPA, BERR should be asserted to terminate the vector
acquisition. The processor separates the processing of this error from bus error by form-
ing a short format exception stack and fetching the spurious interrupt vector instead of
the bus error vector. The processor then proceeds with the usual exception processing.

4.4.5. INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
either from processor recognition of abnormal conditions during instruction, execution,
or from use of instructions whose normal behavior is trapping.

Exception processing for traps is straightforward. The status register is copied, the
supervisor state is entered, and the trace state is turned off. The vector number is inter-
nally generated; for the TRAP instruction, part of the vector number comes from the in-
struction itself. The program counter and the copy of the status register are saved on the
supervisor stack. The saved value of the program counter is the address of the instruc-
tion after the instruction which generated the trap. Finally, instruction execution com-
mences at the address contained in the exception vector.

Some instructions are used specifically to generate traps. The TRAP instruction always
forces an exception and is useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user program detects a runtime er-
ror, which may be an arithmetic overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DIVU} instructions will force an exception if
a division operation is attempted with a divisor of zero.

4.4.6 ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. lllegal instruction is the term us-
ed to refer to any of the word bit patterns which are not the bit patterns of the first word
of a legal M68000 instruction. During instruction execution, if such an instruction is fet-
ched, an illegal instruction exception occurs. Motorola reserves the right to define in-
structions whose opcodes may be any of the illegal instructions. Three bit patterns will
always force an illegal instruction trap on all M68000 Family compatible
microprocessors. They are: $4AFA, $4AFB, and $4AFC. Two of the patterns, $4AFA and
$4AFB, are reserved for Motorola system products. The third pattern, $4AFC, is reserved
for customer use.

In addition to the previously defined illegal instruction opcodes, the MC68010 defines
eight breakpoint illegal instructions with the bit patterns $4848-$484F. These instructions
cause the processor to enter illegal instruction exception processing as usual, but a
breakpoint bus cycle is executed before the stacking operations are performed in which
the function code lines (FCO0-2) are high and the address lines are all low. The processor

42

does not accept or send any data during this cycle. Whether the breakpoint cycle is ter-
minated with a DTACK, BERR, or VPA signal, the processor will continue with the illegal
instruction processing. The purpose of this cycle is to provide a software breakpoint that
will signal external hardware when it is executed. See MC68010 Advanced Information
data sheet.

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as
unimplemented instructions and separate exception vectors are given to these patterns
to permit efficient emulation. “Line F” opcodes beginning with bit patterns equaling 1111
are implemented in the MC68020 as co-processor instructions. This facility allows the
operating system to detect program errors or to emulate unimplemented instructions in
software.

Exception processing for illegal instructions is similar to that for traps. After the instruc-
tion is fetched and decoding is attempted, the processor determines that execution of an
illegal instruction is being attempted and starts exception processing. The exception
stack frame for group 2 is then pushed on the supervisor stack and the illegal instruction
vector is fetched.

4.4.7 PRIVILEGE VIOLATIONS. In order to provide system security, various instructions
are privileged. An attempt to execute one of the privileged instructions while in the user
state will cause an exception. The privileged instructions are:

AND Immediate to SR MOVE USP

EOR Immediate to SR OR Immediate to SR
MOVE to SR RESET

MOVE from SR* RTE

MOVEC* STOP

MOVES*

*MC68010 only

Exception processing for privilege violations is nearly identical to that for illegal instruc-
tions. After the instruction is fetched and decoded, and the processor determines that a
privilege violation is being attempted, the processor starts exception processing. The
status register is copied, the supervisor state is entered, and the trace state is turned off.
The vector number is generated to reference the privilege violation vector, and the cur-
rent program counter and the copy of the status register are saved on the supervisor
stack and, if the processor is an MC68010, the format/offset word, is also saved. The sav-
ed value of the program counter is the address of the first word of the instruction which
caused the privilege violation. Finally, instruction execution commences at the address
contained in the privilege violation exception vector.

4.4.8 TRACING. To aid in program development, the MC68000 includes a facility to allow
instruction by instruction tracing. In the trace state, after each instruction is executed,
an exception is forced, allowing a debugging program to monitor the execution of the
program under test.

43

The trace facility uses the T bit in the supervisor portion of the status register. If the T bit
is negated (off), tracing is disabled and instruction execution proceeds from instruction
to instruction as normal. If the T bit is asserted (on) at the beginning of the execution of
an instruction, a trace exception will be generated after the execution of that instruction
is completed. If the instruction is not executed, either because an interrupt is taken or
the instruction is illegal or privileged, the trace exception does not occur. The trace ex-
ception also does not occur if the instruction is aborted by a reset, bus error, or address
error exception. If the instruction is indeed executed and an interrupt is pending on com-
pletion, the trace exception is processed before the interrupt exception. If, during the ex-
ecution of the instruction, an exception is forced by that instruction, the forced excep-
tion is processeed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during
the exception of a TRAP instruction while tracing is enabled. First the trap exception is
processed, then the trace exception, and finally the interrupt exception. Instruction ex-
ecution resumes in the interrupt handler routine.

The exception processing for trace is quite simple. After the execution of the instruction
is completed and before the start of the next instruction, exception processing begins. A
copy is made of the status register. The transition to supervisor privilege state is made
and, as usual, the T bit of the status register is turned off, disabling further tracing. The
vector number is generated to reference the trace exception vector, and the current pro-
gram counter, the copy of the status register and, on the MC68010, the format/offset
word are saved on the supervisor stack. The saved value of the program counter is the ad-
dress of the next instruction. Instruction execution commences at the address contained
in the trace exception vector.

4.4.9 BUS £RROR. Bus error exceptions occur when the external logic requests that a
bus error be processed by an exception. The current bus cycle which the processor is
making is then aborted. Whether the processor was doing instruction or exception pro-
cessing, that processing is terminated and the processor immediately begins exception
processing.

The bus error facility is identical on the MC68000 and MC68008; however, the stack frame
produced on the MC68010 contains more information. This is to allow the instruction
continuation facility which can be used to implement virtual memory on the MC68010
processor. Bus error for the MC68000/MC68008 and for the MC68010 are described
separately below,

4.4.9.1 Bus Error (MC68000/MC68008). Exception processing for bus error follows the
usual sequence of steps. The status register is copied, the supervisor state is entered,
and the trace state is turned off. The vector number is generated to refer to the bus error
vector. Since the processor was not between instructions when the bus error exception
request was made, the context of the processor is more detailed. To save more of this
context, additional information is saved on the supervisor stack. The program counter
and the copy of the status register are of course saved. The value saved for the program
counter is advanced by some amount, two to ten bytes beyond the address of the first
word of the instruction which made the reference causing the bus error. If the bus error
occurred during the fetch of the next instruction, the saved program counter has a value
in the vicinity of the current instruction, even if the current instruction is a branch, a

44

jump, or a return instruction. Besides the usual information, the processor saves its inter-
nal copy of the first word of the instruction being processed and the address which was
being accessed by the aborted bus cycle. Specific information about the access is also
saved: whether it was a read or write, whether the processor was processing an instruc-
tion or not, and the classification displayed on the function code ouputs when the bus er-
ror occurred. The processor is processing an instruction if it is in the normal state or pro-
cessing a group 2 exception; the processor is not processing an instruction if it is pro-
cessing a group 0 or a group 1 exception. Figure 4-7 illustrates how this information is
organized on the supervisor stack. If a bus error occurs during the last step of exception
processing, while either reading the exception vector or fetching the instruction, the
value of the program counter is the address of the exception vector. Although this infor-
mation is not sufficient in general to effect full recovery from the bus error, it does allow
software diagnosis. Finally, the processor commences instruction processing at the ad-
dress contained in the vector. It is the responsibility of the error handler routine to clean
up the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, address error, or
read, the processor is halted, and all processing ceases. This simplifies the detection of
a catastrophic system failure, since the processor removes itself from the system rather
than destroy all memory contents. Only the RESET pin can restart a halted processor

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 4]

Lower Address R/WI] I/N Function Code

Instruction Register

Status Register

High
[— -~ Program Counter ~ — — — — — —— — — — — — — — ———— — — —
Low
R/W lread/write): write=0, read=1. I/N linstruction/not): instruction=0, not=1

Figure 4-7. Supervisor Stack Order for Bus or Address Error Exception

4.4.9.2 Bus Error (MC68010). Exception processing for a bus error follows a slightly dif-
ferent sequence than the sequence for group 1 and 2 exceptions. In addition to the four
steps executed during exception processing for all other exceptions, 22 words of addi-
tional information are placed on the stack. This additional information describes the in-
ternal state of the processor at the time of the bus error and is reloaded by the RTE in-
struction to continue the instruction that caused the error. Figure 4-8 shows the order of
the stacked information.

45

1514 1312110987 6 5 4 3 2 10

SP Status Register

Program Counter {High)

Program Counter {Low)

1000 Vector Offset
Special Status Word

Fault Address (High)

Fault Address (Low)
UMNUSED, RESERVED

Data Output Buffer
UMUSED, RESERVED

Data Input Buffer
UNUSED, RESERVED

Instruction Input Buffer

Internal Information, 16 Words

NOTE: The stack pointer is decremented by 29 words, although only
26 words of information are actually written to memary. The three
additional words are reserved for future use by Motorola.

Figure 4-8. Exception Stack Order (Bus and Address Error)

The value of the saved program counter does not necessarily point to the instruction that
was executing when the bus error occurred, but may be advanced by up to five words.
This is due to the prefetch mechanism on the MC68010 that always fetches a new in-
struction word as each previously fetched instruction word is used. However, enough in-
formation is placed on the stack for the bus error exception handler routine to determine
why the bus fault occurred. This additional information includes the address that was be-
ing accessed, the function codes for the access, whether it was a read or a write, and
what internal register was included in the transfer. The fault address can be used by an
operating system to determine what virtual memory location is needed so that the re-
quested data can be brought into physical memory. The RTE instruction is then used to
reload the processor’s internal state at the time of the fault, the faulted bus cycle will
then be re-run and the suspended instruction completed. If the faulted bus cycle was a
read-modify-write, the entire cycle will be re-run whether the fault occurred during the
read or the write operation.

An alternate method of handling a bus error is to complete the faulted access in soft-
ware. In order to use this method, use of the special word, the instruction input buffer,
the data input buffer, and the data output buffer image is required. The format of the
special status word is shown in Figure 4-9. If the bus cycle was a write, the data output
buffer image should be written to the fault address location using the function code con-
tained in the special status word. If the cycle was a read, the data at the fault address
location should be written to the images of the data input buffer, instruction input buffer,
or both according to the DF and IF bits.* In addition, for read-modify-write cycles, the
status register image must by properly set to reflect the read data if the fault occurred
during the read portion of the cycle and the write operation (i.e., setting the most signifi-
cant bit of the memory location) must also be performed. This is because the entire read-
modify-write cycle is assumed to have been completed by software. Once the cycle has
*|f the faulted access was a byte operation, the data should be moved from or to the least-significant byte of the data

output or input buffer images unless the HB bit is set. This condition will enly occur if a MOVEP instruction caused the
fault during transfer of bits 8-15 of a word or long word or bits 24-31 of a long word.

46

been completed by software, the RR bit in the special status word is set to indicate to the
processor that it should not re-run the cycle when the RTE instruction is executed. If the
re-run flag is set when an RTE instruction executes, the MC68010 still reads all of the in-
formation from the stack.

15 14 13 12 1 10 -} g 7-3 2 1 0
[RR[o [FJor[am] ne ey [aw] « [Fcorco |
RR -- Re-run flag; 0= processor re-run (default), 1= software re-run.
IF — Instruction fetch to the Instruction Input Buffer
DF — Data fetch to the Data Input Buffer

RM — Read-Modify-Write cycle.
HB — High byte transfer from the Data Output Buffer or to the Data Input Buffer.

BY — Byte transfer flag; HB selects the high or low byte of the transfer register. If BY is clea:, the transfer is word.
RW — Read/Whrite flag; 0= write, 1=read.

FC — The function code used during the faulted access.

d — These bits are reserved for future use by Motorola and will be zero when written by the MCB8010.

Figure 4-9. Special Status Word Format

4.4.10 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access a word or a long word operand or an instruction at an odd address. The effect is
much like an internally generated bus error, so that the bus cycle is abortedd, ant pro-
cessor ceases whatever processing it is currently doing and begins exception process-
ing. After exception processing commences, the sequence is the same as that for bus er-
ror including the information that is stacked, except that the vector number refers to the
address error vector instead. Likewise, if an address error occurs during the exception
processing for a bus error, address error, or reset, the processor is halted.

On the MC68010, the address error exception stacks the same information that is stack-
ed by a bus error exception, therefore it is possible to use the RTE instruction to continue
execution of the suspended instruction. However, if the software re-run flag is not set,
the fault address will be used when the cycle is re-run and another address error excep-
tion will occur. Therefore, the user must be certain that the proper corrections have been
made to the stack image and user registers before attempting to continue the instruc-
tion. With proper software handling, the address error exception handler could emulate
word or long word accesses to odd addresses if desired.

4.5 RETURN FROM EXCEPTION (MC68010)

In addition to returning from any exception handler routine on the MC68010, the RTE in-
struction is used to resume the execution of a suspended instruction by restoring all of
the temporary register and control information stored during a bus error and returning to
the normal processing state. For the RTE instruction to execute properly, the stack must
contain valid and accessible data. The RTE instruction checks for data validity in two
ways; first, by checking the format/offset word for a valid stack format code, and second,
if the format code indicates the long stack format, the long stack data is checked for
validity as it is loaded into the processor. In addition, the data is checked for accessibili-
ty when the processor starts reading the long data. Because of these checks, the RTE in-
struction executes as follows:

47

. Determine the stack format. This step is the same for any stack format and consists
of reading the status register, program counter, and format/offset word. If the for-
mat code indicates a short stack format, execution continues at the new program
counter address. If the format code is not one of the MC68010 defined stack format
codes, exception processing starts for a format error.

. Determine data validity. For a long stack format, the MC88010 will begin to read the
remaining stack data, checking for validity of the data. The only word checked for
validity is the first of the 16 internal information words (SP + 26) shown in Figure 4-8.
This word contains a processor version number in addition to proprietary internal in-
formation that must match the version number of the MC68010 that is attempting to
read the data. This validity check is used to insure that in dual processor systems,
the data will be properly interpreted by the RTE instruction if the two processors are
of different versions. If the version number is incorrect for this processor, the RTE
instruction will be aborted and exception processing will begin for a format error ex-
ception. Since the stack pointer is not updated until the RTE instruction has suc-
cessfully read all of the stack data, a format error occurring at this point will not
stack new data over the previous bus error stack information.

. Determine data accessibility. If the long stack data is valid, the MC68010 performs a
read from the last word (SP + 56) of the long stack to determine data accessibility. If
this read is terminated normally, the processor assumes that the remaining words
on the stack frame are also accessible. If a bus error is signaled before or during
this read, a bus error exception is taken as usual. After this read, the processor
must be able to load the remaining data without receiving a bus error; therefore, if a
bus error occurs on any of the remaining stack reads, the MC68010 treats this as a
double bus fault and enters the halted state.

48

APPENDIX A
CONDITION CODES COMPUTATION

A.1 INTRODUCTION

This appendix provides a discussion of how the condition codes were developed, the
meanings of each bit, how they are computed, and how they are represented in the in-
struction set details.

Two criteria were used in developing the condition codes:
® Consistency — across instruction, uses, and instances
® Meaningful Results — no change unless it provides useful information

The consistency across instructions means that instructions which are special cases of
more general instructions affect the condition codes in the same way. Consistency
across instances means that if an instruction ever affects a condition code, it will always
affect that condition code. Consistency across uses means that whether the condition
codes were set by a compare, test, or move instruction, the conditional instructions test
the same situation. The tests used for the conditional instructions and the code com-
putations are given in paragraph A.5.

A.2 CONDITION CODE REGISTER

The condition code register portion of the status register contains five bits:

N — Negative
Z — Zero

V — Overflow
C — Carry

X — Extend

The first four bits are true condition code bits in that they reflect the condition of the
result of a processor operation. The X bit is an operand for multiprecision computations.
The carry bit (C) and the multiprecision operand extend bit (X) are separate in the
MC68000 to simplify the programming model.

A.3 CONDITION CODE REGISTER NOTATION

In the instruction set details given in Appendix B, the description of the effect on the con-
dition codes is given in the following form:

49

Condition Codes: ‘ | ‘ | ‘ ‘

where:

N (negative) Set if the most significant bit of the result is set. Cleared otherwise.
Z (zero) Set if the result equals zero. Cleared otherwise.

V (overflow) Set if there was an arithmetic overflow. This implies that the result is
not representable in the operand size. Cleared otherwise.

C (carry) Set if a carry is generated out of the most significant bit of the
operands for an addition. Also set if a borrow is generated in a subtrac-
tion. Cleared otherwise.

X (extend) Transparent to data movement. When affected, it is set the same as
the C bit.

The notational convention that appears in the representation of the condition code
register is:

* set according to the result of the operation
not affected by the operation

0 cleared
1 set
U undefined after the operation

A.4 CONDITION CODE COMPUTATION

Most operations take a source operand and a destination operand, compute, and store
the result in the destination location. Unary operations take a destination operand, com-
pute, and store the result in the destination location. Table A-1 details how each instruc-
tion sets the condition codes.

50

Table A-1. Condition Code Computations

Operations X N Z v c Special Definition
ABCD * U ? U ? | C=Decimal Carry
Z=Z«Rme...«RO
ADD, ADDI, £l x| ? ? | V=Sm+Dme+Am+ Sm+Dm+Am_
ADDQ C=5m+Dm+RAm+Dm+ Sm«Rm
ADDX * * 7 ? ? | V=SmeDm+RAm+ Sm«Dm+Rm
C=Sm+Dm+Rm+Dm+ Sm+Rm
Z=Z+Rm-=...«RD
AND, ANDI, - » * 0 1]
EOR, EORI,
MOVEQ, MOVE,
OR, ORI,
CLR, EXT,
MOT, TAS, TST
CHK = ¥ U U U
SUB, SUBI * |+ | * | 7 | ?|v=5mDm+Rm+ SmeDm+Rm
SUBQ C=Sme«Dm+ Rms+Dm+ SmeRm
sUBX * . 7 ? ? | V=5meDmeRm+ Sms+DmeRm
C=5m+Dm+ Rm+Dm+ SmeRm
Z=Z+Ams+...«RO
CMP, CMPI, -] * |7 ? | V=3m+Dm+Rm+ Sme+Dm+Rm
CMPM C=SmeDm+Rm+Dm+ Sm+Am
DIVS, DIVU - * ol ? 0 | V=Division Overflow
MULS, MULU - * » 0 0
SBCD, NBCD * U 7 U ? | C=Decimal Borrow
Z=7+RAms...«RO
NEG ¥ * * 7 ? | V=Dme+Rm, C=Dm+Rm
MNEGX * * ? 7 ? | V=Dm+Am, C=Dm+Rm
Z=Z+RAm=...«RO
BTST, BCHG, - | =-1?] -1 -|z=Dn
BSET, BCLA
ASL * * * ? 7 | V=Dme(Dm—-1+...+Dm—¢)
+DmelDp—1+...4Dm =1}
C=Dm—r+1
ASL (r=0) - * » 0 0
LSL, ROXL * * * 0 ? |C=Dp—r+1
LSR r=0) - b ¥ 0 0
ROXL (r=0} - ' » 0 P IC=X
ROL - b » 0 ? [C=Dm—r+1
AROL (r=0) - x " 0 0
ASR, LSR, % ® *] ?71C=Dr—q
ROXR
ASR, LSR (r=0) - x » 0 0
ROXR (r=0) - ol * 0 P {C=X
ROR = * * 0 7]1C=D;—1
ROR (r=0} — * * 0 0
— Mot affected Sm Source Operand —
U Undefined most significant bit

? Other — see Special Definition Dm Destination operand —
most significant bit

*General Case: Am Result operand —
X=C maost significant bit
N=Rm n bit number
Z=Rms...«RO r shift count

51

A.5 CONDITIONAL TESTS

Table A-2 lists the condition names, encodings, and tests for the conditional branch and
set instructions. The test associated with each condition is a logical formula based on
the current state of the condition codes. If this formula evaluates to 1, the condition suc-
ceeds, or is true. If the formula evaluates to 0, the condition is unsuccessful, or false. For
example, the T condition always succeeds, while the EQ condition succeeds only if the Z
bit is currently set in the condition codes.

Table A-2. Conditional Tests

Mnemonic Condition Encoding Test
T true 0000 1
F false 0001 0
HI high 0010 C.Z
LS low or same 0011 C+2Z
CC (HS}) carry clear 0100 C
CS (LO) carry set 0101 C
NE not equal 0110 g
EQ equal 011 Z
vC overflow clear 1000 vV
VS overflow set 1001 v
PL plus 1010 N
MI minus 1011 N
GE greater or equal 1100 NV 4+ NoV
LT less than 1101 NeV + Nev
GT greater than 1110 NeWeZ+NeVeZ
LE less or equal mmm Z+ NV + NV

52

APPENDIX B
INSTRUCTION SET DETAILS

B.1 INTRODUCTION

This appendix contains detailed information about each instruction in the MC68000 in-
struction set. They are arranged in alphabetical order with the mnemonic heading set in
large bold type for easy reference.

B.2 ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways in which they may be used. The
following classifications will be used in the instruction definitions.
Data If an effective address mode may be used to refer to data operands, it is
considered a data addressing effective address mode.
Memory If an effective address mode may be used to refer to memory operands, it is
considered a memory addressing effective address mode.
Alterable If an effective address mode may be used to refer to alterable (writable)
operands, it is considered an alterable addressing effective address mode.
Control If an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode.

Table B-1 shows the various categories to which each of the effective address modes
belong.

Table B-1. Effective Addressing Mode Categories

" " Addressing Categories Assemblar
Addressing Mode Aiosie Wegleiee Data Memory Control Alterable Syntax
Data Register Direct 000 reg. no. X - - X Dn
Address Register Direct 001 reg. no. = - - X An
Address Register Indirect 010 reg. no. X X X X (An}
Address Register Indirect with on reg. no. X X - X (An)+
Postincrement
Address Register Indirect with 100 reg. no. X X - X = (An)
Predecrement
Address Register Indirect with m req. no X X X X diAn)
Displacement
Address Register Indirect with 110 reg. no. X X X X dlAn, ix)
Index
Absolute Short m 000 X X X X xxx. W
Absolute Long m 001 X X X X xxx. L
Program Counter with m 010 X X X - diPCh
Displacement
Program Counter with Index m on X X X - diPC, ix
Immediate m 100 X X - - #xxx

53

These categories may be combined so that additional, more restrictive, classifications
may be defined. For example, the instruction descriptions use such classifications as
alterable memory or data alterable. The former refers to those addressing modes which
are both alterable and memory addresses, and the latter refers to addressing modes
which are both data and alterable.

B.3 INSTRUCTION DESCRIPTION

The formats of each instruction are given in the following pages. Figure B-1 illustrates
what information is given.

Instruction Name A B C D Add Decimal

Operation Description in RTL
(see paragraph B.4)

— 0 (| (Source)qp + (Destination)1p + >

Assembler ABCD Dy, Dx
_———Tsyntax ABCD - (Ay), —(AX)

Assembler Syntax for this Instruction
Attributes: Size = (Byte)

Text Description of Instruction Operation Dexcriptins: Add Ihe:sourcercperand to.the
bit, and store the result in the d

ed using binary coded decimal
in two different ways:

1. Data register to data reg

registers specified in th

2. Memory to memory: Th

ment addressing mode 1

struction.
This operation is a byte operat
Condition Codes Effects (see Appendix A) »=Condition Codey: S S
EIMEIMEN
N Undefined.
Z Cleared if the result is nor
: g ~ V Undefined.
Instruction Format — Specifies the bit pattern fx: ge: ;fha carry {def:nal)wa
and fields of the operation word and any other e
words which are part of the instruction. The ef- Normally the Z conditior
fective address extensions are not explicitly il- L‘LQSS';E:"@;‘“; f;f“z;foa
lustrated. The extensions (if there are any:) would >\ multiple-precision operatii
follow the illustrated portions of the instruc- Instruction For'""‘; e
tions. For the MOVE instruction, the source ef- .1 oo [Register |,
fective address extension is the first, followed ‘ l ‘ l Rx
by the destination effective address extension. Instruction Fields:

Register Ax field — Specities
If RIM =0, specifies a dat:
If RIM =1, specifies an ad¢

ing mode.
. . RIM field — Specifies th
Meanings and allowed values of the various 0= The 35::;5; Is dats
fields required by the instruction format. 1 — The aperation Is men

Register Ry field — Specifies
If RIM =0, specifies a dat:
If RIM =1, specifies an adt
ing mode.

Figure B-1. Instruction Description Format

54

B.4 REGISTER TRANSFER LANGUAGE DEFINITIONS

The following register transfer language definitions are used for the operation descrip-
tion in the details of the instruction set.

OPERANDS:

An — address register SSP — supervisor stack pointer

Dn — data register USP — user stack pointer

Rn — any data or address register SP — active stack pointer (equivalent to A7)

PC — program counter X — extend operand (from condition

SR — status register codes)

CCR — condition codes (low order byte of z — zero condition code

status register) v — overflow condition code

Immediate Data — immediate data from the instruction

d — address displacement Destination — destination effective address

Source — source effective address Vector — location of exception vector

SUBFIELDS AND QUALIFIERS:

<bit> OF < operand > selects a single bit of the operand

< operand > [<bit number>:<bit number>] selects a subfield of an operand

(<operand>) the contents of the referenced location

<operand>1Q the operand is binary coded decimal; operations are to be performed

in decimal.

(< address register>) the register indirect operator which indicates that the operand re-
— (< address register>) gister points to the memory location of the instruction operand. The

(< address register>)+ optional mode qualifiers are —, +, (d) and (d, ix); these are explained

in Section 2.

OPERATIONS: Operations are grouped into binary, unary, and other.

Binary — These operations are written <operand> <op> <operand> where <op> is one of the
following:

the left operand is moved to the location specified by the right operand

the contents of the two operands are exchanged

the operands are added

the right operand is subtracted from the left operand

the operands are multiplied

the first operand is divided by the second operand

the operands are logically ANDed

the operands are logically ORed

the operands are logically exclusively ORed

relational test, true if left operand is less than right operand

relational test, true if left operand is not equal to right operand

shifted by the left operand is shifted or rotated by the number of positions specified by the
rotated by right operand

VAN e ST e g f |

Unary:

~ < operand> the operand is logically complemented

< operand > sign-extended the operand is sign extended, all bits of the upper half are made
equal to high order bit of the lower half

<operand > tested the operand is compared to 0, the results are used to set the condi-
tion codes

Other:
TRAP equivalent to PC—(SSP) —; SR— (SSP) —; (vector)— PC
STOP enter the stopped state, waiting for interrupts

If <condition> then <operations> else <operations> The condition is tested. If true, the
operations after the ““then” are performed. If the condition is false and the optional *‘else”
clause is present, the operations after the “else' are performed. If the condition is false and
the optional “else” clause is absent, the instruction performs no operation.

55

ABCD .cowmwews ABCD

Operation: (Source)1p + (Destination)10 + X— Destination

Assembler ABCD Dy, Dx
Syntax: ABCD - (Ay), —(Ax)

Attributes: Size = (Byte)

Description: Add the source operand to the destination operand along with the extend
bit, and store the result in the destination location. The addition is perform-
ed using binary coded decimal arithmetic. The operands may be addressed
in two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecre-
ment addressing mode using the address registers specified in the in-
struction.

This operation is a byte operation only.

Condition Codes: XN Z V C
[*[u]*]u[e]
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a carry (decimal) was generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm-
ing before the start of an operation. This allows suc-
cessful tests for zero results upon completion of
multiple-precision operations.
Instruction Format:
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

Register R/ | Register
11100 Rx 110|000 M Ry

Instruction Fields:

Register Rx field — Specifies the destination register:
If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the predecrement address-
ing mode.

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Ry field — Specifies the source register:
If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the predecrement address-
ing mode.

56

ADD ADD

Add Binary

Operation: (Source) + (Destination)—Destination

Assembler ADD <ea>,Dn

Syntax: ADD Dn, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Add the source operand to the destination operand, and store the result in

the destination location. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

X

[E[=]= [=]=]

Condition Codes:

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

Set the same as the carry bit.

x*xO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
" Effective Address
1111] 0| 1| Register |Op-Mode Mode | Register

Instruction Fields:
Register field — Specifies any of the eight data registers.
Op-Mode field —

Byte Word Long Operation
000 001 010 (<Dn>)+(<ea>)— <Dn>
100 101 110 (<ea>)+(<Dn>)— <ea>

Effective Address field — Determines addressing mode:
a. If the location specified is a source operand, then all addressing
modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 |register number
An* 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100
*Word and Long only.
— Continued —

57

ADD A By ADD

Effective Address field (Continued)
b. If the location specified is a destination operand, then only alterable
memory addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode| Mode Register
Dn - -— d(An, Xi) 110 |register number
An - 2 Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) e .
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — =

1. If the destination is a data register, then it cannot be specified by using
the destination <ea> mode, but must use the destination Dn mode in-

stead.
2. ADDA is used when the destination is an address register. ADDI and AD-

DQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

Notes:

58

ADDA ADDA

Add Address

Operation: (Source) + (Destination)— Destination

Assembler

Syntax: ADD <ea>, An

Attributes: Size = (Word, Long)

Description: Add the source operand to the destination address register, and store the

result in the address register. The size of the operation may be specified to
be word or long. The entire destination address register is used regardless
of the operation size.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11

1({1]0]1

0 9 8 7 6 5 4 3 2 1 0
Effective Address
Op-Mode | “y;0de |Register

Register

Instruction Fields:

Register field — Specifies any of the eight address registers. This is always
the destination.

Op-Mode field — Specifies the size of the operation:
011 — word operation. The source operand is sign-extended to a long
operand and the operation is performed on the address register using
all 32 bits.
111 — long operation.

Effective Address field — Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 01t
d(An) 101 | register number Imm 111 100

59

ADDI ADDI

Add Immediate

Operation: Immediate Data + (Destination)— Destination

Assembler

Syntax: ADDI #<data>,<ea>

Attributes: Size = (Byte, Word, Long)

Description: Add the immediate data to the destination operand, and store the result in

the destination location. The size of the operation may be specified to be
byte, word, or long. The size of the immediate data matches the operation
size.
Condition Codes: XN ZV C
l * | * | * | * | *I
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.
Set the same as the carry bit.

XO<NZ

Instruction Format:
15 14 13

ojoj|o

0 9 8 7 6 5 4 K] 2 1 0
0 Effective Address
Mode | Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

12 11
0|0 1]1

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

Immediate field — (Data immediately following the instruction):
If size =00, then the data is the low order byte of the immediate word.
If size =01, then the data is the entire immediate word.
If size =10, then the data is the next two immediate words.

60

ADDQ

Operation:

Assembler
Syntax:

Attributes:

Description:

Add Quick

ADDQ #<data>, <ea>

Size = (Byte, Word, Long)

ADDQ

Immediate Data + (Destination)— Destination

Add the immediate data to the operand at the destination location. The

data range is from 1 to 8. The size of the operation may be specified to be
byte, word, or long. Word and long operations are also allowed on the ad-
dress registers and the condition codes are not affected. The entire
destination address register is used regardless of the operation size.

Condition Codes:

XO<NZ

X

Lelefx]*]+]

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

Set the same as the carry bit.

The condition codes are not affected if an addition to an address register is

made.

Instruction Format:

15 14 13 12 11

10 8 8

7

6

5 4 3 2 1 0

0

110

1 Data | 0O

Size

Effective Address
Mode | Register

Instruction Fields:

Data field — Three bits of immediate data, 0, 1-7 representing a range of 8,
1 to 7 respectively.
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An* 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

*Word and Long only.

61

A D Dx Add Extended A D DX

Operation: (Source) + (Destination) + X— Destination

Assembler ADDX Dy, Dx
Syntax: ADDX —(Ay), —(Ax)

Attributes: Size = (Byte, Word, Long)

Description: Add the source operand to the destination operand along with the extend
bit and store the result in the destination location. The operands may be ad-
dressed in two different ways:

1. Data register to data register: the operands are contained in data
registers specified in the instruction.

2. Memory to memory: the operands are addressed with the predecre-
ment addressing mode using the address registers specified in the
instruction.

The size of the operation may be specified to be byte, word, or long.

Condition Codes:

XO<NZ

X NZVC
[[T
Set if the result is negative. Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.
Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm-
ing before the start of an operation. This allows suc-
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register . R/ | Register
111|101 Rx 1S|ze(J0M Ry

=

Instruction Fields:
Register Rx field — Specifies the destination register:

If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the predecrement address-
ing mode.

Size field — Specifies the size of the operation:

00 — byte operation.
01 — word operation.
10 — long operation.

— Continued —

62

ADDX ADDX

Instruction Fields: (Continued)

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.
Register Ry field — Specifies the source register:
If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the predecrement ad-
dressing mode.

63

AND AND

AND Logical

Operation: (Source)A(Destination)— Destination

Assembler AND <ea>, Dn

Syntax: AND Dn, <ea>

Attributes: Size = (Byte, Word, Long)

Description: AND the source operand to the destination operand and store the result in

the destination location. The size of the operation may be specified to be
byte, word, or long. The contents of an address register may not be used as
an operand.

Condition Codes: XN ZV C
I_l * | * gl :
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 _ Effective Address
11100 |Register | Op-Mode Mode | Register

Instruction Fields:
Register field — Specifies any of the eight data registers.

Op-Mode field —
Byte Word Long Operation
000 001 o010 (<Dn>)A (<ea>)— <Dn>
100 101 110 (<ea>) A (<Dn>)— <ea>

Effective Address field — Determines addressing mode:
If the location specified is a source operand then only data addressing
modes are allowed as shown:

64

Addressing Mode | Mode Register Addressing Mode| Mode Register

Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001

(An) + 011 | register number d(PC) 111 010

—(An) 100 | register number d(PC, Xi) 111 011

d(An) 101 | register number Imm 111 100

— Continued —

AND

AND Logical

Effective Address field (Continued)

AND

If the location specified is a destination operand then only alterable memo-

ry addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —
Notes: 1. If the destination is a data register, then it cannot be specified by us-

mode instead.
2. ANDI is used when the source is immediate data. Most assemblers

automatically make this distinction.

65

ing the destination <ea> mode, but must use the destination Dn

ANDI ANDI

Operation: Immediate Data A (Destination)— Destination

Assembler
Syntax: ANDI #<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: AND the immediate data to the destination operand and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The size of the immediate data matches the operation

size.

Condition Codes: XNZVC
L—=[*[*]o]o]

Set if the most significant bit of the result is set. Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

Not affected.

XO<NZ

Instruction Format:
15141312111098?65@32 1 0

; Effective Address
0|0|0O|0|0]|0O|1]0]| Size Mode | Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

Immediate field — (Data immediately following the instruction):
If size =00, then the data is the low order byte of the immediate word.
If size =01, then the data is the entire immediate word.
If size =10, then the data is the next two immediate words.

66

A N D I AND Immediate to Condition Codes A N D |
to CCR to CCR

Operation: (Source)ACCR— CCR

Assembler
Syntax: ANDI #xxx, CCR

Attributes: Size =(Byte)

Description: AND the immediate operand with the condition codes and store the result
in the low-order byte of the status register.

Condition Codes: X NZVEC

E3 KA EIESER
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

XO<NZ

Instruction Format:

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJoJo[oJoJo[i[oJoJo[1[1[1[1]0o]0O
olo[o[ololoo]0O Byte Data (8 bits)

67

A N D I AND Im?::erﬁ,i;;e;g :::u-sl:::i:i)negiswr A N D I
to SR ° to SR

Operation: If supervisor state
then (Source)ASR— SR
else TRAP

Assembler
Syntax: ANDI #xxx, SR

Attributes: Size =(Word)

Description: AND the immediate operand with the contents of the status register and
store the result in the status register. All bits of the status register are af-
fected.

Condition Codes: XN ZV C

CAENEAEIER

Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ojofoJoJoJoJ1JoJoJ1J1[1[1]1] o]0
Word Data (16 bits)

68

ASL, ASR .omsn ASL, ASR

Operation:
Assembler
Syntax:

Attributes:

Description:

(Destination) Shifted by <count> — Destination

ASd Dx, Dy
ASd #<data>, Dy
ASd <ea>

Size = (Byte, Word, Long)

Arithmetically shift the bits of the operand in the direction specified. The
carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two different ways:
1. Immediate: the shift count is specified in the instruction (shift range,
1-8).
2. Register: the shift count is contained in a data register specified in the
instruction,
The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only and the operand size is
restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit. The overflow bit in-
dicates if any sign changes occur during the shift.

C Operand —— 0

ASL:

X |-

For ASR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; the sign bit is replicated into the high order bit.

Operand = C

ASR: —]

— Continued —

69

ASL, ASR .o..s« ASL, ASR

Condition Codes: XNZV C

(]|« [|

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if the most significant bit is changed at any time during the shift
operation. Cleared otherwise.

Set according to the last bit shifted out of the operand. Cleared for a
shift count of zero.

Set according to the last bit shifted out of the operand. Unaffected for
a shift count of zero.

xX 0 <Nz

Instruction Format (Register Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count/
A 1]0 Register dr

Size | ilr| 0 | 0| Register

Instruction Fields (Register Shifts):
Count/Register field — Specifies shift count or register where count is
located:
If ilr=0, the shift count is specified in this field. The values 0, 1-7 re-
present a range of 8, 1 to 7 respectively.
If i/r=1, the shift count (modulo 64) is contained in the data register
specified in this field.
dr field — Specifies the direction of the shift:
0 — shift right.
1 — shift left.
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
ifr field —
If ilr =0, specifies immediate shift count.
if ilr=1, specifies register shift count.
Register field — Specifies a data register whose content is to be shifted.

Instruction Format (Memory Shifts):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

L{a[1]0]0]9]0)del1 [Mode |Register

— Continued —

70

ASL, ASR ASL, ASR

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:
0 — shift right.
1 — shift left.
Effective Address field — Specifies the operand to be shifted. Only memory
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — =
d(An) 101 | register number Imm = —_

71

B cc Branch Conditionally Bcc

Operation: If (condition true) then PC+d—PC

Assembler
Syntax: Bce <label>

Attributes: Size = (Byte, Word)

Description: If the specified condition is met, program execution continues at location
(PC) +displacement. Displacement is a twos complement integer which
counts the relative distance in bytes. The value in PC is the current instruc-
tion location plus two. If the 8-bit displacement in the instruction word is
zero, then the 16-bit displacement (word immediately following the instruc-
tion) is used. “cc” may specify the following conditions:

CC| carry clear 0100| C LS low or same 0011 ([C+Z
CS| carry set 0101| C LT less than 1101 | NV +N.V
EQ| equal 0111| Z L Ml minus 1011 | N
GE| greater or equal |1100| NeV +N.V NE not equal 0110 | Z
GT| greater than 1110| NeV+Z+N.V.Z || PL plus 1010 | N
HI | high 0010| C.z VC overflow clear |1000 | V
LE | less or equal 1111 Z+ NV + NV VS overflow set 1001 |V
Condition Codes: Not affected.
Instruction Format:
15 14 13 12 11 10 9 7 68 5 4 3 2 1 0
o[1]1]0] oondmon | 8-bit Displacement

16-bit Displacement if 8-bit Displacement =0

Instruction Fields:
Condition field — One of fourteen conditions discussed in description.
8-bit Displacement field — Twos complement integer specifying the
relative distance (in bytes) between the branch instruction and the
next instruction to be executed if the condition is met.
16-bit Displacement field — Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short branch to the immediately following instruction cannot be done

because it would result in a zero offset which forces a word branch instruc-
tion definition.

72

BCHG BCHG

Test a Bit and Change

Operation: - (<bit number>) OF Destination—Z;
~ (< bit number>) OF Destination— <bit number> OF Destination
Assembler BCHG Dn, <ea>
Syntax: BCHG #<data>, <ea>
Attributes: Size =(Byte, Long)
Description: A bit in the destination operand is tested and the state of the specified bit

is reflected in the Z condition code. After the test, the state of the specified
bit is changed in the destination. If a data register is the destination, then
the bit numbering is modulo 32 allowing bit manipulation on all bits in a
data register. If a memory location is the destination, a byte is read from
that location, the bit operation performed using the bit number modulo 8,
and the byte written back to the location with zero referring to the least-
significant bit. The bit number for this operation may be specified in two
different ways:
1. Immediate — the bit number is specified in a second word of the in-
struction.
2. Register — the bit number is contained in a data register specified in
the instruction.

XN Z V C

===l

Condition Codes:

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
0|0 |0| 0| Register|1|0|1 Mode | Register

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register whose content is the bit
number.
Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn* 000 |register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm —_ —

*Long only; all others are byte only.

73

— Continued —

BCHG

Test a Bit and Change

Instruction Format (Bit Number Static):

BCHG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

91010181100 ol Mode | Register

ofo[0|0[0[0]O bit number

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 |register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 |register number d(PC) — —
—(An) 100 |register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

*Long only; all others are byte only.

bit number field — Specifies the bit numbers.

74

BCLR

Operation:

Test a Bit and Clear

~ (< bit number>) OF Destination)—Z:

0— < bit number> OF Destination

Assembler
Syntax:

Attributes:

Description:

BLCR Dn, <ea>
BCLR #<data>, <ea>

Size = (Byte, Long)

BCLR

A bit in the destination operand is tested and the state of the specified bit

is reflected in the Z condition code. After the test, the specified bit is
cleared in the destination. If a data register is the destination, then the bit
numbering is modulo 32 allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that
location, the bit operation performed using the bit number modulo 8, and
the byte written back to the location with zero referring to the least-
significant bit. The bit number for this operation may be specified in two
different ways:
1. Immediate — the bit number is specified in a second word of the in-
struction.

2. Register — the bit number is contained in a data register specified in
the instruction.

Condition Codes:

XO<NZ

X

N Z V C

==l |

Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.
Not affected.

Instruction Format (Bit Number Dynamic):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
0[{0|0|0|Register|1 |10 Mode | Register

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register whose content is the bit

number.

Effective Address field — Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —
*Long only; all others are byte only.
— Continued —

75

BCLR BCLR

Instruction Format (Bit Number Static):

Test a Bit and Clear

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

010]010110]01011710] g | Register

ojo(ojOo|0OjO|OfO bit number

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn* 000 register only d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

*Long only; all others are byte only.

bit number field — Specifies the bit number.

76

BRA BRA

Operation: PC+d—PC

Assembler
Syntax: BRA <label>

Attributes: Size = (Byte, Word)

Description: Program execution continues at location (PC)+ displacement. Displace-
ment is a twos complement integer which counts the relative distance in
bytes. The value in PC is the current instruction location plus two. If the
8-bit displacement in the instruction word is zero, then the 16-bit displace-
ment (word immediately following the instruction) is used.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

O[1[1]o]ofo]o|0 | 8bit Displacement
16-bit Displacement if B-bit Displacement =0

Instruction Fields:
8-bit Displacement field — Twos complement integer specifying the rela-
tive distance (in bytes) between the branch instruction and the next
instruction to be executed if the condition is met.
16-bit Displacement field — Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short branch to the immediately following instruction cannot be done

because it would result in a zero offset which forces a word branch instruc-
tion definition.

77

Test a Bit and Set B S ET

BSET

Operation: ~(<bit number>) OF Destination—2
1— <bit number> OF Destination
Assembler BSET Dn, <ea>
Syntax: BSET #<data>, <ea>
Attributes: Size = (Byte, Long)
Description: A bit in the destination operand is tested and the state of the specified bit

is reflected in the Z condition code. After the test, the specified bit is set in
the destination. If a data register is the destination, then the bit numbering
is modulo 32, allowing bit manipulation on all bits in a data register. If a
memory location is the destination, a byte is read from that location, the bit
operation performed using the bit number modulo 8, and the byte written
back to the location with zero referring to the least-significant bit. The bit
number for this operation may be specified in two different ways:
1. Immediate — the bit number is specified in a second word of the in-
struction.
2. Register — the bit number is contained in a data register specified in
the instruction.

XN ZV

(=l=l* ==

Condition Codes:

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.
Instruction Format (Bit Number Dynamic):
15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1 0
Effective Address
0|0|0|O0|Register|1|1]1 Micidls | Register

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register whose content is the bit
number.
Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn* 000 |register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —
*Long only; all others are byte only
— Continued —

78

BSET Toeta it o o BSET

Instruction Format (Bit Number Static):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Effective Address
0j0fofof1f0l0j0 1)1 Mode | Register

0O(0j0|0|0|0O]|0O]O bit number

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn* 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 11 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

*Long only; all others are byte only.

bit number field — Specifies the bit number.

79

B S R Branch to Subroutine B S R

Operation: PC— - (SP); PC+d—PC

Assembler
Syntax: BSR <label>

Attributes: Size = (Byte, Word)

Description: The long word address of the instruction immediately following the BSR in-
struction is pushed onto the system stack. Program execution then con-
tinues at location (PC)+ displacement. Displacement is a twos comple-
ment integer which counts the relative distances in bytes. The value in PC
is the current instruction location plus two. If the 8-bit displacement in the
instruction word is zero, then the 16-bit displacement (word immediately
following the instruction) is used.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O[1[1]0|0o]JOo|0[1] 8-bit Displacement
16-bit Displacement if 8-bit Displacement =0

Instruction Fields:
8-bit Displacement field — Twos complement integer specifying the rela-
tive distance (in bytes) between the branch instruction and the next in-
struction to be executed if the condition is met.
16-bit Displacement field — Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short subroutine branch to the immediately following instruction cannot
be done because it would result in a zero offset which forces a word branch
instruction definition.

80

Toeta b4 BTST

BTST

Operation: ~(<bit number>) OF Destination—2Z
Assembler BTST Dn, <ea>

Syntax: BTST #<data>, <ea>

Attributes: Size = (Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. If a data register is the destination,
then the bit numbering is modulo 32, allowing bit manipulation on all bits in
a data register. If a memory location is the destination, a byte is read from
that location, and the bit operation performed using the bit number modulo
8 with zero referring to the least-signifcant bit. The bit number for this
operation may be specified in two different ways:
1. Immediate — the bit number is specified in a second word of the in-
struction.
2. Register — the bit number is contained in a data register specified in
the instruction.

Description:

X N
(=[=T*T=]=]
Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.
Not affected.

Condition Codes:

XO<NZ

Instruction Format (Bit Number Dynamic):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
" Effective Address
0|0|0|0|Register|1|0 |0 Mode | Register

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register whose content is the bit num-

ber.
Effective Address field — Specifies the destination location. Only data
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn* 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100
*Long only; all others are byte only.
— Continued —

81

BTST

Test a Bit

Instruction Format (Bit Number Static):

15 14 13 12 11

10 9 8

7 6 5 4 3 2

1

BTST

0|0]0

of1{ofo|o0

010

Effective Address
Mode | Register

0]0]0

0(0]0]|0]0

bit number

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data

addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm —- —

*Long only; all others are byte only.

bit number field — Specifies the bit number.

82

CHK CHK

Check Register Against Bounds

Operation: |f Dn<0 or Dn> (<ea>) then TRAP
Assembler

Syntax: CHK <ea>, Dn

Attributes: Size = (Word)

The content of the low order word in the data register specified in the in-
struction is examined and compared to the upper bound. The upper bound
is a twos complement integer. If the register value is less than zero or
greater than the upper bound contained in the operand word, then the pro-
cessor initiates exception processing. The vector number is generated to
reference the CHK instruction exception vector.

Description:

Condition Codes: XNZVC
[(=[*TuJu]u]
N Set if Dn<0; cleared if Dn> (<ea>). Undefined otherwise.
Z Undefined.
V Undefined.
C Undefined.
X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 8 2 1 0
; Effective Address
0[1]|0]|0|Register|{1(|1]|0 Mode | Register

Instruction Fields:
Register field — Specifies the data register whose content is checked.
Etfective Address field — Specifies the upper bound operand word. Only
data addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 [register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

83

CLR CLR

Clear an Operand

Operation: 0— Destination
Assembler

Syntax: CLR <ea>

Attributes: Size = (Byte, Word, Long)

Description: The destination is cleared to all zero bits. The size of the operation may be
specified to be byte, word, or long.
X NZVEC

[=lo[1]o]0]
Always cleared.
Always set.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:
15 14 13 12 11

0|1|0j0f0j0]|1 |0

M0 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register |
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — =
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

Note:

84

A memory destination is read before it is written to.

CMP CMP

Compare

Operation: (Destination) — (Source)
Assembler

Syntax: CMP <ea>, Dn
Attributes: Size = (Byte, Word, Long)

Subtract the source operand from the destination operand and set the con-
dition codes according to the result; the destination location is not chang-
ed. The size of the operation may be specified to be byte, word, or long.

Description:

X

=

Condition Codes:

Z NV C
t’*l*[

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

XO<NZ

Instruction Format:
15 14

110 (11

0 9 8 7 6 5 4 3 2 1 0
Effective Address
Op-Model “yiode | Register

13 12 1

Register

Instruction Fields:
Register field — Specifies the destination data register.

Op-Mode field —
Byte Word Long Operation
000 001 o010 (<Dn>)—-(<ea>)

Effective Address field — Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 [register number
An* 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

*Word and Long only.

CMPA is used when the destination is an address register. CMPI is used
when the source is immediate data. CMPM is used for memory to memory
compares. Most assemblers automatically make this distinction.

Note:

85

CMPA CMPA

Compare Address

Operation: (Destination) — (Source)
Assembler

Syntax: CMPA <ea>, An
Attributes: Size =(Word, Long)

Subtract the source operand from the destination address register and set
the condition codes according to the result; the address register is not
changed. The size of the operation may be specified to be word or long.
Word length source operands are sign extended to 32 bit quantities before
the operation is done.

Condition Code: XN ZVEZC

[=IxE&] %]+ |

Description:

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

X0O<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
110 (1|1 |Register Op-Mode Mode |Register

Instruction Fields:

Register field — Specifies the destination address register.

Op-Mode field — Specifies the size of the operation:
011 — word operation. The source operand is sign-extended to a long
operand and the operation is performed on the address register using
all 32 bits.
111 — long operation.

Effective Address field — Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) 111 010
— (An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

86

CMPI CMPI

Compare Immediate

Operation: (Destination) — Immediate Data
Assembler

Syntax: CMPI #<data>, <ea>
Attributes: Size =(Byte, Word, Long)

Subtract the immediate data from the destination operand and set the con-
dition codes according to the result; the destination location is not chang-
ed. The size of the operation may be specified to be byte, word, or long. The
size of the immediate data matches the operation size.

Description:

X NZVC

=] =] £13 |

Condition Codes:

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

XO<NZ

Instruction Format:
15 14 13 12 11

ojojojo|t1|1jojo

10 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode |Mode Register Addressing Mode |Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

Immediate field — (Data immediately following the instruction):
If size =00, then the data is the low order byte of the immediate word.
If size =01, then the data is the entire immediate word.
If size =10, then the data is the next two immediate words.

87

CMPM CMPM

Operation: (Destination)— (Source)

Assembler
Syntax: CMPM (Ay) +, (Ax)+

Attributes: Size =(Byte, Word, Long)

Description: Subtract the source operand from the destination operand, and set the con-
dition codes according to the results; the destination location is not chang-
ed. The operands are always addressed with the postincrement addressing
mode using the address registers specified in the instruction. The size of
the operation may be specified to be byte, word, or long.

Condition Codes: XN ZV C

= il 1

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

XO<NZ

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1lol1 4 Register 1 |size l0l0] 1 Register
Rx Ry

Instruction Fields:

Register Rx field — (always the destination) Specifies an address register
for the postincrement addressing mode.

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.

Register Ry field — (always the source) Specifies an address register for
the postincrement addressing mode.

88

D Bcc Test Condition, Decrement, and Branch D Bcc

Operation: If (condition false)
then Dn—1—Dn;
If Dn+ —1
then PC+d—PC
else PC +2—PC (Fall through to next instruction)

Assembler
Syntax: DBcc Dn, <label>

Attributes: Size = (Word)

Description: This instruction is a looping primitive of three parameters: a condition, a
data register, and a displacement. The instruction first tests the condition
to determine if the termination condition for the loop has been met, and if
§0, no operation is performed. If the termination condition is not true, the
low order 16 bits of the counter data register are decremented by one. If the
result is —1, the counter is exhausted and execution continues with the
next instruction. If the result is not equal to — 1, execution continues at the
location indicated by the current value of PC plus the sign-extended 16-bit
displacement. The value in PC is the current instruction location plus two
“cc” may specify the following conditions:

CC| carry clear 0100| C LS| low orsame | 0011 | C+Z
CS| carry set 0101 | C LT | less than 1101 | NeV+ N.V
EQ| equal 0111 | Z MI | minus 1011 [N

F | false 00010 o NE| not equal 0110 [Z

GE| greater or equal | 1100 | NeV + N+V PL | plus 1010 | N

GT| greater than 1110 | NeVeZ+N.V.Z|| T | true 0000 | 1

HI | high 0010 | C-Z VC | overflow clear | 1000 | V

LE | less or equal 1111 | Z+NV+ NV || VS| overflow set 1001 | V

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0[1[0]1] Condition [1 100 [1 [Register
Displacement

Instruction Fields:
Condition field — One of the sixteen conditions discussed in description.

Register field — Specifies the data register which is the counter.
Displacement field — Specifies the distance of the branch (in bytes).

Notes: 1. The terminating condition is like that defined by the UNTIL loop con-

structs of high-level languages. For example: DBMI can be stated as
“decrement and branch until minus.”

— Continued —

89

DBcc

Test Condition, Decrement and Branch D Bcc

Notes: (Continued)

2.
3.

Most assemblers accept DBRA for DBF for use when no condition is
required for termination of a loop.

There are two basic ways of entering a loop; at the beginning or by
branching to the trailing DBcc instruction. If a loop structure ter-
minated with DBcc is entered at the beginning, the control index count
must be one less than the number of loop executions desired. This
count is useful for indexed addressing modes and dynamically
specified bit operations. However, when entering a loop by branching
directly to the trailing DBcc instruction, the control index should equal
the loop execution count. In this case, if a zero count occurs, the DBcc
instruction will not branch causing complete bypass of the main loop.

90

DIVS DIVS

Signed Divide

Operation: (Destination)/(Source)— Destination

Assembler

Syntax: DIVS <ea>, Dn

Attributes: Size = (Word)

Description: Divide the destination operand by the source operand and store the result

in the destination. The destination operand is a long operand (32 bits) and
the source operand is a word operand (16 bits). The operation is performed
using signed arithmetic. The result is a 32-bit result such that:
1. The quotient is in the lower word (least significant 16-bits).
2. The remainder is in the upper word (most significant 16-bits).
The sign of the remainder is always the same as the dividend unless the re-
mainder is equal to zero. Two special conditions may arise:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc-
tion. If overflow is detected, the condition is flagged but the operands
are unaffected.

Condition Codes: XN ZVC
S ENET AN
Set if the quotient is negative. Cleared otherwise. Undefined if over-

flow.

Set if the quotient is zero. Cleared otherwise. Undefined if overflow.
Set if division overflow is detected. Cleared otherwise.

Always cleared.

Not affected.

XO<N =Z

Instruction Format:
15

1]10(0

12
0

1110 9 8 7 6 5 4 3 2 1 0
Effective Address

Mode | Register

14 13

Register [1 [1 |1

Instruction Fields:
Register field — Specifies any of the eight data registers. This field always
specifies the destination operand.
Effective Address field — Specifies the source operand. Only data ad-

dressing modes are allowed as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001

(An) + 011 | register number d(PC) 111 010

—(An) 100 | register number d(PC, Xi) 111 011

d(An) 101 | register number Imm 111 100

91

Overflow occurs if the quotient is larger than a 16-bit signed integer.

DIVU DIVU

Unsigned Divide

Operation: (Destination)/(Source)— Destination

Assembler

Syntax: DIVU <ea>, Dn

Attributes: Size = (Word)

Description: Divide the destination operand by the source operand and store the result

in the destination. The destination operand is a long operand (32 bits) and
the source operand is a word (16 bit) operand. The operation is performed
using unsigned arithmetic. The result is a 32-bit result such that:
1. The quotient is in the lower word (least significnat 16 bits).
2. The remainder is in the upper word (most significant 16 bits).
Two special conditions may arise:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc-
tion. If overflow is detected, the condition is flagged but the operands
are unaffected.

XN ZV C

=] = T] o)
Set if the most significant bit of the quotient is set. Cleared other-
wise. Undefined if overflow.
Set if the quotient is zero. Cleared otherwise. Undefined if overflow.
Set if division overflow is detected. Cleared otherwise.
Always cleared.
Not affected.

Condition Codes:

XO<N Z

Instruction Format:
15 14 13 12 11

1]10]0(0

10 9 8 7 6 5§ 4 3 2 1 0
o | 1|1 | Effective Address
Mode | Register

Register

Instruction Fields:
Register field — specifies any of the eight data registers. This field always
specifies the destination operand.
Effective Address field — Specifies the source operand. Only data addres-
sing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode |Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

Note:

92

Overflow occurs if the quotient is larger than a 16-bit unsigned integer.

EOR EOR

Exclusive OR Logical

Operation: (Source)e (Destination)— Destination

Assembler

Syntax: EOR Dn, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Exclusive OR the source operand to the destination operand and store the

result in the destination location. The size of the operation may be
specified to be byte, word, or long. This operation is restricted to data
registers as the source operand. The destination operand is specified in the
effective address field.

X NZVGC
[=1*[*]o]0]
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
1|10 |1]|1|Register |Op-Mode Mode | Register

Instruction Fields:
Register field — Specifies any of the eight data registers.

Op-Mode field —
Byte Word Long Operation
100 101 110 (<ea>)e(<Dx>)—<ea>

Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 [register number
An — —_ Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 107 | register number ITmm — —_

Note:

Memory to data register operations are not allowed. EORI is used when the

source is immediate data. Most assemblers automatically make this
distinction.

93

EORI EORI

Exclusive OR Immediate

Operation: Immediate Data @ (Destination)— Destination
Assembler

Syntax: EORI #<data>, <ea>

Attributes: Size =(Byte, Word, Long)

Exclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The immediate data matches the opera-
tion size.

Description:

XN ZVC
=% | * 0] 6]
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:
15 14 13 12 11 10 9 8 7 & 5 4 3 2 1 0
Effective Address
e il) i s B Mode | Register
Word Data (16 bits) Byte Data (8 bits)

Long Data (32 bits, including previous word)

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 [register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — p—
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

Immediate field — (Data immediately following the instruction):
If size =00, then the data is the low order byte of the immediate word.
If size =01, then the data is the entire immediate word.
If size =10, then the data is the next two immediate words.

94

Eo R I Exclusive OR Immediate to Condition Codes EO R I
to CCR to CCR

Operation: (Source)e CCR— CCR

Assembler
Syntax: EORI #xxx, CCR

Attributes: Size =(Byte)

Description: Exclusive OR the immediate operand with the condition codes and store
the result in the low-order byte of the status register.

Condition Codes: XN Z V C

11

Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Changed if bit 2 of immediate operand is one. Unchanged otherwise.
Changed if bit 1 of immediate operand is one. Unchanged otherwise.
Changed if bit 0 of immediate operand is one. Unchanged otherwise.
Changed if bit 4 of immediate operand is one. Unchanged otherwise.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 g 6 5 4 3 2 1 0
oJoJoJoJi1]o[iJoJoJo[i[1[1]1]J0]0
olojololololo(o0 Byte Data (8 bits)

95

Eo R I Exclusive 0F(lplrrlr‘!’rll;l::eizt?ntsc;rtutzks,:‘i;lus Register Eo R I
to SR to SR

Operation: If supervisor state
then (Source)e SR— SR
else TRAP

Assembler
Syntax: EORI #xxx, SR

Attributes: Size = (Word)

Description: Exclusive OR the immediate operand with the contents of the status
register and store the result in the status register. All bits of the status
register are affected.

Condition Codes: XN ZVeCe

Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Changed if bit 2 of immediate operand is one. Unchanged otherwise.
Changed if bit 1 of immediate operand is one. Unchanged otherwise.
Changed if bit 0 of immediate operand is one. Unchanged otherwise.
Changed if bit 4 of immediate operand is one. Unchanged otherwise.

XO<NZ

Instruction Format:

15141312111093?65432 1 0

0[0]0|0]1]0|1[0[0]1f1J1|1|1[ofo
Word Data (16 bits)

96

EXG EXG

Operation: Rx+Ry

Assembler
Syntax: EXG Rx, Ry

Attributes: Size =(Long)

Description: Exchange the contents of two registers. This exchange is always a long (32
bit) operation. Exchange works in three modes:
1. Exchange data registers.
2. Exchange address registers.
3. Exchange a data register and an address register.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 &€ 5 4 3 2 1 0

Register . Register
1(1]0]0 Rx 1 Op-Mode Ry

Instruction Fields:
Register Rx field — Specifies either a data register or an address register
depending on the mode. If the exchange is between data and address
registers, this field always specifies the data register.

Op-Mode field — Specifies whether exchanging:
01000 — data registers.
01001 — address registers.
10001 — data register and address register.

Register Ry field — Specifies either a data register or an address register
depending on the mode. If the exchange is between data and address
registers, this field always specifies the address register.

97

EXT EXT

Operation: (Destination) Sign-extended — Destination

Assembler
Syntax: EXT Dn

Attributes: Size = (Word, Long)

Description: Extend the sign bit of a data register from a byte to a word or from a word to
a long operand depending on the size selected. If the operation is word
sized, bit [7] of the designated data register is copied to bits [15:8] of that
data register. If the operation is long sized, bit [15] of the designated data
register is copied to bits [31:16] of that data register.

Condition Codes: XNZVC

—[*[*]o]0]

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

Not affected.

XO<NZ

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0]1|0|0|1]0|0lOp-Mode|0|0[0|Register|

Instruction Fields:
Op-Mode Field — Specifies the size of the sign-extension operation:
010 — Sign-extend low order byte of data register to word.
011 — Sign-extend low order word of data register to long.
Register field — Specifies the data register whose content is to be sign-
extended.

98

I L L EG A L Ilegal Instruction I L L EG A L

Operation: PC— —(SSP); SR— —(SSP)
(lllegal Instruction Vector)—PC

Attributes: None
Description: This bit pattern causes an illegal instruction exception. All other illegal in-

struction bit patterns are reserved for future extension of the instruction
set.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0
[of1]ofo[1fe[1]of[1]1[1]1]1]1]o]o|

99

JMP JMP

Operation: Destination—PC

Assembler
Syntax: JMP <ea>

Attributes: Unsized

Description: Program execution continues at the effective address specified by the in-
struction. The address is specified by the control addressing modes.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
R R R Mode | Register

Instruction Fields:
Effective Address field — Specifies the address of the next instruction.
Only control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + — — d(PC) 111 010
— (An) — — d(PC, Xi) 111 011
d(An) 101 | register number Imm - -

100

JSR R JSR

Operation: PC— —(SP); Destination—PC

Assembler
Syntax: JSR <ea>

Attributes: Unsized

Description: The long word address of the instruction immediately following the JSR in-
struction is pushed onto the system stack. Program execution then con-
tinues at the address specifed in the instruction.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

0 [90071 L)L B Mode | Register

Instruction Fields:
Effective Address field — Specifies the address of the next instruction.

Only control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — d{An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + — — d(PC) 111 010
—(An) — — d(PC, Xi) 111 011
d(An) 101 | register number Imm — —

101

L EA Load Effective Address L EA

Operation: Destination— An

Assembler
Syntax: LEA <ea>, An

Attributes: Size =(Long)

Description: The effective address is loaded into the specified address register. All 32
bits of the address register are affected by this instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Effective Address
0|1 |0 |0 |Register 11 Mode |F{egister

—

Instruction Fields:
Register field — Specifies the address register which is to be loaded with

the effective address.
Effective Address field — Specifies the address to be loaded into the ad-
dress register. Only control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn = — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + — —_ d(PC) 111 010
—(An) — — d(PC, Xi) 111 011
d(An) 101 | register number Imm — —

102

LINK LINK

Operation: An— —(SP); SP— An; SP+d—SP

Assembler
Syntax: LINK An, #<displacement>

Attributes: Unsized

Description: The current content of the specified address register is pushed onto the
stack. After the push, the address register is loaded from the updated stack
pointer. Finally, the 16-bit sign-extended displacement is added to the
stack pointer. The content of the address register occupies two words on
the stack. A negative displacement is specified to allocate stack area.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O[1]o0Jo[1[1]1J0JO0J1[0[1]0]Register
Displacement

Instruction Fields:
Register field — Specifies the address register through which the link is to
be constructed.
Displacement field — Specifies the twos complement integer which is to
be added to the stack pointer.

Note: LINK and UNLK can be used to maintain a linked list of local data and
parameter areas on the stack for nested subroutine calls.

103

LSL, LSR Logical Shift LSL, LSR

Operation:
Assembler
Syntax:

Attributes:

Description:

LSL:

LSR:

(Destination) Shifted by <count> — Destination

LSd Dx, Dy
LSd #<data>, Dy
LSd <ea>

Size = (Byte, Word, Long)

Shift the bits of the operand in the direction specified. The carry bit
receives the last bit shifted out of the operand. The shift count for the shif-
ting of a register may be specified in two different ways:
1. Immediate — the shift count is specified in the instruction (shift range
1-8).
2. Register — the shift count is contained in a data register specified in
the instruction.
The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only and the operand size is
restricted to a word.

For LSL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit.

C == Operand - 0

X |-

For LSR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; zeroes are shifted into the high order bit.

0 Operand =

— Continued —

104

LSL, LSR ... LSL,LSR

Condition Codes: XNZVC
|2IxT*]g [#]
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Set according to the last bit shifted out of the operand. Cleared for
a shift count of zero.
Set according to the last bit shifted out of the operand. Unaffected
for a shift count of zero.

X O<NZ

Instruction Format (Register Shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count/ i .
1(1(1]0 Register dr| Size |ilr |0 |1 |Register

Instruction Fields (Register Shifts):

Count/Register field —
Ififr =0, the shift count is specified in this field. The values 0, 1-7 repre-
sent a range of 8, 1 to 7 respectively.
If ifr =1, the shift count (modulo 64) is contained in the data register
specified in this field,

dr field — Specifies the direction of the shift:
0 — shift right.
1 — shift left.

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.

ilr field —
If ifr =0, specifies immediate shift count.
If ilr =1, specifies register shift count.

Register field — Specifies a data register whose content is to be shifted.

— Continued —

105

LSL, LSR LSL,LSR

Instruction Format (Memory Shifts):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Effective Address
1(1]1(0]0|0Of[1|dr|1]1 Modo lFlegister

Instruction Flelds (Memory Shifts):
dr field — Specifies the direction of the shift:

0 — shift right.

1 — shift left.
Effective Address field — Specifies the operand to be shifted. Only memory

alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn —_ — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

106

M OV E Move Data from Source to Destination M OV E

Operation: (Source)— Destination

Assembler

Syntax: MOVE <ea>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Move the content of the source to the destination location. The data is ex-

amined as it is moved, and the condition codes set accordingly. The size of
the operation may be specified to be byte, word, or long.

X NZVZC

[=[*[*]o]0]
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:

1% 14 13 12 11 10 9 B8 7 6 5 4 3 2 1 0
; Destination Source
%[2] Skke Register | Mode Mode | Register

Instruction Fields:
Size field — Specifies the size of the operand to be moved:
01 — byte operation.
11 — word operation.
10 — long operation.
Destination Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

107

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 [register number d(An, Xi) 110 | register number
An — — Abs.W 111 000

(An) 010 | register number Abs.L 111 001

(An) + 011 | register number d(PC) — —

—(An) 100 | register number d(PC, Xi) — —

d(An) 101 | register number Imm — —

— Continued —

M OV E Move Data from Source to Destination M OV E

Instruction Fields: (Continued)

Source Effective Address field — Specifies the source operand. All ad-
dressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An* 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

*For byte size operation, address register direct is not allowed.

Notes: 1.

assemblers automatically make this distinction.
2. MOVEQ can also be used for certain operations on data registers.

108

MOVEA is used when the destination is an address register. Most

MOVE caoeiomee o MOVE
from CCR from CCR

Operation: CCR-—Destination

Assembler
Syntax: MOVE CCR, <ea>

Attributes: Size =(Word)

Description: The content of the status register is moved to the destination location. The
source operand is a word, but only the low order byte contains the condi-
tion codes. The upper byte is all zeros.

Condition Codes: Not affected.

Instruction Format:

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Effective]Address
of1]o|lo|lofo|l1]o]|1]1 Mode | Register

Instruction Fields:
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode|Mode Register Addressing Mode|Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —_

Note: MOVE to CCR is a word operation. AND, OR, and EOR to CCR are byte operations.

109

=]
-
(=]
@
[{=]
O
=

MOVE
to CCR

Move to Condition Codes

MOVE
to CCR

Operation: (Source)— CCR

Assembler

Syntax: MOVE <ea>, CCR

Attributes: Size = (Word)

Description: The content of the source operand is moved to the condition codes. The

source operand is a word, but only the low order byte is used to update the
condition codes. The upper byte is ignored.

XNZVEC

(== 5 [*] =]

Condition Codes:

Set the same as bit 3 of the source operand.
Set the same as bit 2 of the source operand.
Set the same as bit 1 of the source operand.
Set the same as bit 0 of the source operand.
Set the same as bit 4 of the source operand.

Instruction Format:
15

0]1

14 13 12 11

0(0|0]1

10 9 8 7 6 5 4 3 2 1 0
Effective Address
01011 Mode | Register

Instruction Fields:
Effective Address field — Specifies the location of the source operand.
Only data addressing modes are allowed as shown:

Addressing Mode |Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 [register number
An — — Abs.W 111 000
(An) 010 [register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

Note:

operations.

110

MOVE to CCR is a word operation. AND, OR, and EOR to CCR are byte

MOVE
to SR

MOVE
to SR

Move to the Status Register
(Privileged Instruction)

Operation: If supervisor state
then (Source)— SR
else TRAP
Assembler
Syntax: MOVE <ea>, SR
Attributes: Size =(Word)
Description: The content of the source operand is moved to the status register. The

source operand is a word and all bits of the status register are affected.
Condition Codes: Set according to the source operand.

Instruction Format:
15 13 12

O(1|jo0fo0jOoj1|1(O]|1|1

10 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

14 11

Instruction Fields:
Effective Address field — Specifies the location of the source operand.
Only data addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 [register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

111

MOVE
from SR

MOVE
from SR

Move from the Status Register

Operation: SR— Destination
Assembler

Syntax: MOVE SR, <ea>
Attributes: Size =(Word)

Description: The content of the status register is moved to the destination location. The
operand size is a word.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
O (A Q1Q 1@ 1& (B Mode ‘Register

Instruction Fields:

Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

Note:

112

A memory destination is read before it is written to.

MOVE "iinmesmersss MOVE
from SR from SR

Operation: If supervisor state
then SR— Destination

else TRAP

Assembler
Syntax: MOVE SR, <ea>

Attributes: Size =(Word)

Description: The content of the status register is moved to the destination location. The
operand size is a word.

Condition Codes: Not affected.

Instruction Format:

%5 14 13 12 11 1 9 8 7 6 5 4 3 2 1 0
Effective Address
O|1|0j0JOjOjOfO]T1 1 Mode | Register

Instruction Fields:
Effective Address field — Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode|Mode Register Addressing Mode|Mode Register
Dn 000 |register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 |register number Abs.L 111 001
(An) + 011 |register number d(PC) — —
—(An) 100 |register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

NOTE: Use the MOVE from CCR instruction to access the conditon codes.

113

o
™
o
@D
©
O
=

MOVE ..o MOVE
USP USP

Operation: If supervisor state
then USP— An;
An—USP
else TRAP

Assembler MOVE USP, An
Syntax: MOVE An, USP
Attributes: Size =(Long)

Description: The contents of the user stack pointer are transferred to or from the
specified address register.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0|1|0|0|1|1[1|0|0|1|1[0|dr|Register

Instruction Fields:
dr field — Specifies the direction of transfer:
0 — transfer the address register to the USP.
1 — transfer the USP to the address register.
Register field — Specifies the address register to or from which the user
stack pointer is to be transferred.

114

MOVEA MOVEA

Move Address

Operation: (Source)— Destination

Assembler

Syntax: MOVEA <ea>, An

Attributes: Size = (Word, Long)

Description: Move the content of the source to the destination address register. The size

of the operation may be specified to be word or long. Word size source
operands are sign extended to 32 bit quantities before the operation is
done.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 § 4 3 2 1 0
. |Destination Source
Q|8 |=ae Register al Mode | Register

Instruction Fields:

Size field — Specifies the size of the operand to be moved:
11 — Word operation. The source operand is sign-extended to a long
operand and all 32 bits are loaded into the address register.
10 — Long operation.

Destination Register field — Specifies the destination address register.

Source Effective Address field — Specifies the location of the source
operand. All addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

115

o
™
o
@
©
o
=

M OV E C Move to/from Control Register M 0 V E C
(Privileged Instruction)

Operation: |f supervisor state
then Rc—Rn, Rn—Rc
else TRAP

Assembler MOVEC Rc, Rn
Syntax: MOVEC Rn, Rc

Attributes: Size =(Long)

Description: Copy the contents of the specified control register to the specified general
register or copy the contents of the specified general register to the
specified control register. This is always a 32-bit transfer even though the
control register may be implemented with fewer bits. Unimplemented bits
are read as zeros.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

ofrjojoy1f1]1fojo|1f1|{1]1]0][1]|dr

A/D| Register Control Register

Instruction Fields:
dr field — Specifies the direction of the transfer:
O0—control register to general register.
1—general register to control register.
A/D field — Specifies the type of general register:
0—data register.
1—address register.
Register field — Specifies the register number.
Control Register field — Specifies the control register.
Currently defined control registers are:
Binary Hex Name/Function
0000 0000 0000 000 Source Function Code (SFC) register.

0000 0000 0001 001 Destination Function Code (DFC) register.

1000 0000 0000 800 User Stack Pointer.

1000 0000 0001 801 Vector Base Register for exception vector
table.

All other codes cause an illegal instruction exception.

116

MOVEM ...suwerae: MOVEM

Operation:
Assembler
Syntax:

Attributes:

Description:

Registers — Destination
(Source)— Registers

MOVEM <register list>, <ea>
MOVEM <ea>, <register list>

Size = (Word, Long)

Selected registers are transferred to or from consecutive memory location
starting at the location specified by the effective address. A register is
transferred if the bit corresponding to that register is set in the mask field.
The instruction selects how much of each register is transferred; either the
entire long word can be moved or just the low order word. In the case of a
word transfer to the registers, each word is sign-extended to 32 bits (also
data registers) and the resulting long word loaded into the associated
register.

MOVEM allows three forms of address modes: the control modes, the
predecrement mode, or the postincrement mode. If the effective address is
in one of the control modes, the registers are transferred starting at the
specified address and up through higher addresses. The order of transfer is
from data register 0 to data register 7, then from address register 0 to ad-
dress register 7.

If the effective address is in the predecrement mode, only a register to
memory operation is allowed. The registers are stored starting at the
specified address minus two and down through lower addresses. The order
of storing is from address register 7 to address register 0, then from data
register 7 to data register 0. The decremented address register is updated
to contain the address of the last word stored.

If the effective address is in the postincrement mode, only a memory to
register operation is allowed. The registers are loaded starting at the
specified address and up through higher addresses. The order of loading is
the same as for the control mode addressing. The incremented address
register is updated to contain the address of the last word loaded plus two.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Effective Address
0|1/0|0]|1|dr|O|0]|1|Sz Mode | Register
Register List Mask

— Continued —

117

MOVEMuwerse. MOVEM

Instruction Fields:

dr field:
Specifies the direction of the transfer:
0 — register to memory
1 — memory to register.

Sz field — Specifies the size of the registers being transferred:
0 — word transfer.
1 — long transfer.

Effective Address field — Specifies the memory address to or from which
the registers are to be moved.
For register to memory transfer, only control alterable addressing
modes or the predecrement addressing mode are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + — — d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

For memory to register transfer, only control addressing modes or the
postincrement addressing mode are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) — — d(PC, Xi) 111 011
d(An) 101 | register number Imm — —

Register List Mask field — Specifies which registers are to be transferred.
The low order bit corresponds to the first register to be transferred;
the high bit corresponds to the last register to be transferred. Thus,
both for control modes and for the postincrement mode addresses, the
mask correspondence is

14 13 12
| A7|A6]A5|A4]A3|A2|A1 IAO|D7|D6 |05|D4|D3|D2|D1|D0|

while for the predecrement mode addresses, the mask correspondence is

15 14 13 12 11 10 9 8
| DO[D1 |D2|DS]D4[DS|DS]D?]A0 LA1]A2|A3 |A4 |A5[Ae] A—[

Note: An extra read bus cycle occurs for memory operands. This amounts to a
memory word at one address higher than expected being addressed during
operation.

118

M OV E P Move Peripheral Data M OV E P

Operation: (Source)— Destination

Assembler MOVEP Dx, d(Ay)
Syntax: MOVEP d(Ay), Dx

Attributes: Size =(Word, Long)

Description: Data is transferred between a data register and alternate bytes of memory,
starting at the location specified and incrementing by two. The high order
byte of the data register is transferred first and the low order byte is
transferred last. The memory address is specified using the address
register indirect plus displacement addressing mode. If the address is
even, all the transfers are made on the high order half of the data bus; if the
address is odd, all the transfers are made on the low order half of the data
bus.

Example: Long transfer to/from an even address.

Byte organization in register

31 24 23 16 15 8 7 0
[hi-order [mid-upper | mid-lower | low-order |

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
hi-order
mid-upper
mid-lower
low-order

Example: Word transfer to/from an odd address.

Byte organization in register
3 24 23 16 15 g 7 0
| | [hi-order [low-order |

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
hi-order
low-order

Condition Codes: Not affected.

— Continued —

119

MOVEP ..coomo. MOVEP

Instruction Format:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Address
0j0]0/0 Register Op-Mode |0 0 | 1 Register
Displacement

Instruction Fields:

Data Register field — Specifies the data register to or from which the data
is to be transferred.

Op-Mode field — Specifies the direction and size of the operation:
100 — transfer word from memory to register.
101 — transfer long from memory to register.
110 — transfer word from register to memory.
111 — transfer long from register to memory.

Address Register field — Specifies the address register which is used in
the address register indirect plus displacement addressing mode.
Displacement field — Specifies the displacement which is used in calculat-

ing the operand address.

120

MOVEQ MOVEQ

Operation: Immediate Data— Destination

Assembler
Syntax: MOVEQ #<data>, Dn

Attributes: Size =(Long)
Description: Move immediate data to a data register. The data is contained in an 8-bit

field within the operation word. The data is sign-extended to a long operand
and all 32 bits are transferred to the data register.

Condition Codes: X N Z V C
[—=[*[*[0o]0]
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0
|0|1|1|1|F{egister|0| Data |

Instruction Fields:
Register field — Specifies the data register to be loaded.
Data field — 8 bits of data which are sign extended to a long operand.

121

o
o
)
©
()
=

MOVES “ssimsz= MOVES
(Privileged Instruction)

Operation: If supervisor state
then Rn— Destination <DFC>
Source <SFC> —Rn
else TRAP

Assembler MOVES Rn, <ea>
Syntax: MOVES <ea>, Rn

Attributes: Size =(Byte, Word, Long)

Description: Move the byte, word, or long operand from the specified general register to
a location within the address space specified by the destination function
code (DFC) register. Or, move the byte, word, or long operand from a loca-
tion within the address space specified by the source function code (SFC)
register to the specified general register.

If the destination is a data register, the source operand replaces the cor-
responding low-order bits of the that data register. If the destination is an
address register, the source operand is sign-extended to 32 bits and then
loaded into that address register.

Condition Codes: Not affected.

Instruction Format:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

oj0f(0O]JO]|1]1]1]|O0]| Size Effective Address

A/D| Register |drf{O(Of(O|OfO|O|jO]JOfO|O]fO

Instruction Fields:

Size field — Specifies the size of the operation:
00—byte operation.
01—word operation.
10—Ilong operation.

A/D field — Specifies the type of general register:
0—data register.
1—address register.
Register field — Specifies the register number.
dr field — Specifies the direction of the transfer:
0—from <ea>to general register.
1—from general register to <ea>.

—Continued—

122

MOVES

Instruction Fields: (continued)
Effective Address field — Specifies the source or destination loca-

tion within the alternate address space. Only alterable memory
addressing modes are allowed as shown:

Move to/from Address Space
(Privileged Instruction)

MOVES

Addressing Mode|Mode Register Addressing Mode|Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
- (An) 100 | register number d(PC, Xi) — .
d(An) 101 | register number Imm — —

123

=
-
(=]
2}
[{=]
@)
=

MULS MULS

Signed Multiply

Operation: (Source)*(Destination)— Destination
Assembler

Syntax: MULS <ea>, Dn

Attributes: Size = (Word)

Multiply two signed 16-bit operands yielding a 32-bit signed result. The
operation is performed using signed arithmetic. A register operand is taken
from the low order word; the upper word is unused. All 32 bits of the product
are saved in the destination data register.

Description:

X NZVcGe
[=[*[*[o]0]

Condition Codes:

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111]0]|0|Register| 1| 1] 1 Effective Address

Mode | Register

Instruction Fields:
Register field — Specifies one of the data registers. This field always
specifies the destination.
Effective Address field — Specifies the source operand. Only data ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

124

MULU MULU

Unsigned Mulitply

Operation: (Source)*(Destination)— Destination
Assembier

Syntax: MULU <ea>, Dn

Attributes: Size =(Word)

Multiply two unsigned 16-bit operands yielding a 32-bit unsigned result. The
operation is performed using unsigned arithmetic. A register operand is
taken from the low order word; the upper word is unused. All 32 bits of the
product are saved in the destination data register.

Description:

X NZ V C
[=T*T* [019]
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i Effective Address
1|/1| 0|0 |Register ([0 |1 |1 Mode |Flegister

Instruction Fields:
Register field — Specifies one of the data registers. This field always spe-
cifies the destination.
Effective Address field — Specifies the source operand. Only data address-
ing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 [register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

125

NBCD NBCD

Negate Decimal with Extend

Operation: 0 - (Destination)1g — X— Destination

Assembler

Syntax: NBCD <ea>

Attributes: Size = (Byte)

Description: The operand addressed as the destination and the extend bit are sub-

tracted from zero. The operation is performed using decimal arithmetic.
The result is saved in the destination location. This instruction produces
the tens complement of the destination if the extend bit is clear, the nines
complement if the extend bit is set. This is a byte operation only.

Condition Codes: XNZVCCe
* U * U *
Undefined.
Cleared if the result is non-zero. Unchanged otherwise.
Undefined.

Set if a borrow (decimal) was generated. Cleared otherwise.
Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple-
precision operations.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
Ojtjojof1jofofojojo Mode | Register

Instruction Fields:
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — —_ Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

126

NEG NEG

Negate

Operation: 0-— (Destination)— Destination

Assembler

Syntax: NEG <ea>

Attributes: Size =(Byte, Word, Long)

Description: The operand addressed as the destination is subtracted from zero. The

result is stored in the destination location. The size of the operation may be
specified to be byte, word, or long.

XN ZVC

EEIEEILE

Condition Codes:

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Cleared if the result is zero. Set otherwise.

Set the same as the carry bit.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. Effective Address
0/1|0|/0|0|1]0]|0]| Size Mode | Reglster

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

127

NEGX NEGX

Negate with Extend

Operation: 0 - (Destination) — X— Destination

Assembler

Syntax: NEGX <ea>

Attributes: Size = (Byte, Word, Long)

Description: The operand addressed as the destination and the extend bit are sub-

tracted from zero. The result is stored in the destination location. The size
of the operation may be specified to be byte, word, or long.

XNZVZC

Set if the result is negative. Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.
Set if an overflow is generated. Cleared otherwise.

Set if a borrow is generated. Cleared otherwise.

Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple-
precision operations.

Condition Codes:

XO<NZ

Instruction Format:
15 14 13 12 10 9 8

o|1|0|0|0f0O|0OfO

7 6 5 4 3 2 1 0
Effective Address
Mode | Register

11

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An)+ 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — =

128

N 0 P No Operation N 0 P

Operation: None

Assembler
Syntax: NOP

Attributes: Unsized

Description: No operation occurs. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP
instruction.

Condition Codes: Not affected.
Instruction Format:

15 14 13 12 11 10 9 1 0
O[O0 11T oo [T [iToTo ol 1]

129

NOT NOT

Logical Complement

Operation: ~ (Destination)— Destination

Assembler

Syntax: NOT <ea>

Attributes: Size = (Byte, Word, Long)

Description: The ones complement of the destination operand is taken and the result

stored in the destination location. The size of the operation may be
specified to be byte, word, or long.

XN ZV C

[=[*[*[0]0]
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:
15 14 13 12 11

of1|jo0|0f0|1]1|0

0 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

130

OR OR

Inclusive OR Logical

Operation: (Source) v (Destination)— Destination
Assembler OR <ea>, Dn

Syntax: OR Dn, <ea>

Attributes: Size =(Byte, Word, Long)

Inclusive OR the source operand to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The contents of an address register may
not be used as an operand.

Description:

X NZVC
[=1*[*[of0]

Condition Codes:

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.
Instruction Format:
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
; Effective Address
1]0]| 0|0 |Register| Op-Mode Mode | Register

Instruction Fields:
Register field — Specifies any of the eight data registers.

Op-Mode field —
Byte Word Long Operation
000 001 010 (<Dn>)v(<ea>)—<Dn>
100 101 110 (<ea>)v(<Dn>)—<ea>

Effective Address field —
If the location specified is a source operand then only data addressing
modes are allowed as shown:

131

Addressing Mode| Mode Register Addressing Mode | Mode Register

Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000

(An) 010 | register number Abs.L 111 001

(An) + 011 | register number d(PC) 111 010

—(An) 100 | register number d(PC, Xi) 111 011

d(An) 101 | register number Imm 111 100

— Continued —

OR

Inclusive OR Logical

Effective Address field (Continued)

If the location specified is a destination operand then only memory alter-

able addressing modes are allowed as shown:

OR

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm —_ —
Notes: 1. If the destination is a data register, then it cannot be specified by using

the destination <ea> mode, but must use the destination Dn mode in-

stead.

ORI is used when the source is immediate data. Most assemblers

automatically make this distinction.

132

0 R I Inclusive OR Immediate o RI

Operation: Immediate Data v (Destination)— Destination

Assembler
Syntax: ORI #<data>, <ea>

Attributes: Size = (Byte, Word, Long)
Description: Inclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be

specified to be byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes:

X NZVC
[=[*]*fo]o]
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

XO<NZ

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
0|0|0|0|0O|0O |0 |0 | Size Mode | Register
Word Data (16 bites) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm - —

Immediate field — (Data immediately following the instruction):
If size =00, then the data is the low order byte of the immediate word.
If size =01, then the data is the entire immediate word.
If size =10, then the data is the next two immediate words.

133

0 R I Inclusive OR Immediate to Condition Codes o R I
to CCR to CCR

Operation: (Source) v CCR— CCR

Assembler
Syntax: ORI #xxx, CCR

Attributes: Size = (Byte)

Description: Inclusive OR the immediate operand with the condition codes and store the
result in the low-order byte of the status register.

Condition Codes:

X N Z V C

HEEEEN
Set if bit 3 of immediate operand is one. Unchanged otherwise.
Set if bit 2 of immediate operand is one. Unchanged otherwise.
Set if bit 1 of immediate operand is one. Unchanged otherwise.
Set if bit 0 of immediate operand is one. Unchanged otherwise.
Set if bit 4 of immediate operand is one. Unchanged otherwise.

XO0<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
O/0fofojofojojofofJof1]1J1]1TJo0TJo0
ojojofo|jo|0|0O]|O Byte Data (8 bits)

134

0 R I Inclusive OR Immediate to the Status Register O R I
t S R (Privileged Instruction) t S R

Operation: If supervisor state
then (Source) v SR— SR
else TRAP

Assembler
Syntax: ORI #xxx, SR

Attributes: Size = (Word)

Description: Inclusive OR the immediate operand with the contents of the status
register and store the result in the status register. All bits of the status
register are affected.

Condition Codes: XN ZV C

HEEEIE
Set if bit 3 of immediate operand is one. Unchanged otherwise.
Set if bit 2 of immediate operand is one. Unchanged otherwise.
Set if bit 1 of immediate operand is one. Unchanged otherwise.
Set if bit 0 of immediate operand is one. Unchanged otherwise.
Set if bit 4 of immediate operand is one. Unchanged otherwise.

XO<NZ

Instruction Format:

15 14 13 12 11 10 8 7 6 1 0
o|o[o}o]o]o|o ofof1 111] | [o]0
d Data (16 bits)

135

P EA Push Effective Address P EA

Operation: Destination— —(SP)

Assembler
Syntax: PEA <ea>

Attributes: Size =(Long)

Description: The effective address is computed and pushed onto the stack. A long word
address is pushed onto the stack.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 €& 5 4 3 2 1 0
Effective Address

011010\ 11010101011} "\sde | Register

Instruction Fields:
Effective Address field — Specifies the address to be pushed onto the
stack. Only control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — - d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + — — d(PC) 11 010
— (An) — — d(PC, Xi) 111 011
d(An) 101 | register number Imm — —

136

RESET ..cuwow.. RESET

(Privileged Instruction)

Operation: If supervisor state
then Assert RESET Line
else TRAP

Assembler
Syntax: RESET

Attributes: Unsized
Description: The reset line is asserted causing all external devices to be reset. The pro-

cessor state, other than the program counter, is unaffected and execution
continues with the next instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1 0
[0[1[oJoft1]1]1[oJo[1[1[T[0[0]0 0]

137

ROL N ot Exten ROL
ROR ROR

Operation: (Destination) Rotated by <count> — Destination

Assembler ROd Dx, Dy
Syntax: ROd #<data>, Dy
ROd <ea>

Attributes: Size = (Byte, Word, Long)

Description: Rotate the bits of the operand in the direction specified. The extend bit is
not included in the rotation. The shift count for the rotation of a register
may be specified in two different ways:

1. Immediate — the shift count is specified in the instruction (shift range,
1-8).
2. Register — the shift count is contained in a data register specified in
the instruction.
The size of the operation may be specified to be byte, word, or long. The
content of memory may be rotated one bit only and the operand size is
restricted to a word.

For ROL, the operand is rotated left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry bit and
back into the low order bit. The extend bit is not modified or used.

ROL:
C |- Operand e
For ROR, the operand is rotated right; the number of position shifted is the
shift count. Bits shifted out of the low order bit go to both the carry bit and
back into the high order bit. The extend bit is not modified or used.
ROR:
- Operand = C
Condition Codes: X NZVEC

[—[*]*]o]*]
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Set according to the last bit shfited out of the operand. Cleared for
a shift count of zero.
Not affected.

X 0O<NZ

— Continued —

138

ROL

ROL
ROR

ROR

Instruction Format (Register Rotate):

Rotate (Without Extend)

3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4
Count/ : .
111110 Register dr| Size |ilr| 1 | 1 |Register

Instruction Fields (Register Rotate):
Count/Register field —
if ilr=0, the rotate count is specified in this field. The values 0, 1-7

represent a range of 8, 1 to 7 respectively.
If ilr =1, the rotate count (modulo 64) is contained in the data register
specified in this field.
dr field — Specifies the direction of the rotate:
0 — rotate right.
1 — rotate left.
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
ifr field —
If ilr=0, specifies immediate rotate count.
If ilr=1, specifies register rotate count.
Register field — Specifies a data register whose content is to be rotated.

Instruction Format (Memory Rotate):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

R R R Mode | Register

Instruction Fields (Memory Rotate):
dr field — Specifies the direction of the rotate:

0 — rotate right

1 — rotate left.
Effective Address field — Specifies the operand to be rotated. Only

memory alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn - = d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —_
d(An) 101 | register number Imm — —_

139

ROXL ROXL
ROXR ROXR

Operation:
Assembler
Syntax:

Attributes:

Description:

ROXL:

ROXR:

(Destination) Rotated by <count> — Destination

ROXd Dx, Dy
ROXd #<data>, Dy
ROXd <ea>

Size = (Byte, Word, Long)

Rotate the bits of the destination operand in the direction specified. The ex-
tend bit is included in the rotation. The shift count for the rotation of a
register may be specified in two different ways:
1. Immediate — the shift count is specified in the instruction (shift
range, 1-8).
2. Register — the shift count is contained in a data register specified in
the instruction.
The size of the operation may be specified to be byte, word, or long. The
content of memory may be rotated one bit only and the operand size is
restricted to a word.

For ROXL, the operand is rotated left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and ex-
tend bits; the previous value of the extend bit is shifted into the low order
bit.

[
X

C |- Operand -

For ROXR, the operand is rotated right; the number of positions shifted is
the shift count. Bits shifted out of the low order bit go to both the carry and
extend bits; the previous value of the extend bit is shifted into the high
order bit.

Y
(@]

Y

Operand

— Continued —

140

ROX L Rotate with Extend R ox L
ROXR ROXR

Condition Codes: X N Z V C

EJEIEZN LS
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.
Set according to the last bit shifted out of the operand. Set to the
value of the extend bit for a shift count of zero.
Set according to the last bit shifted out of the operand. Unaffected
for a shift count of zero.

X O O<NZ

instruction Format (Register Rotate):
15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

Count/ . . P
1(1]11]0 Register dr | Size |ilr |1 | 0 | Register

Instruction Fields (Register Rotate):

Count/Register field:
If ilr=0, the rotate count is specified in this field. The values 0, 1-7
represent range of 8, 1 to 7 respectively.
If ilr =1, the rotate count (modulo 64) is contained in the data register
specified in this field.

dr field — Specifies the direction of the rotate:
0 — rotate right.
1 — rotate left.

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.

ilr field —
If ilr=0, specifies immediate rotate count.
If ilr=1, specifies register rotate count.

Register field — Specifies a data register whose content is to be rotated.

— Continued —

141

ROXL ROXL
ROXR ROXR

Instruction Format (Memory Rotate):
15141312111093?6543210
Effective Address
|1 111100 1holdr 111 ie Register

Instruction Fields (Memory Rotate):.
dr field — Specifies the direction of the rotate:

0 — rotate right.

1 — rotate left.
Effective Address field — Specifies the operand to be rotated. Only

memory alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — d(An, Xi) 110 |register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —

142

RTD RTD

Return and Deallocate Parameters
Operation: (SP)+ —PC; SP+d—SP

Assembler
Syntax: RTD #<displacement>

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter value is lost. After the program counter is read from the stack, the
displacement value is sign-extended to 32 bits and added to the stack
pointer.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

of1jo)jof1|{1|t1|ofo|t1]|1]1]0]1]0]0

Displacement

Instruction Field:
Displacement field — Specifies the twos complement integer which is to

be sign-extended and added to the stack pointer.

143

o
-
o
D
©
O
=

RT E Return from Exception RT E
(Privileged Instruction)

Operation: If supervisor state
then (SP)+ —SR; (SP)+ —PC
else TRAP

Assembler
Syntax: RTE

Attributes: Unsized

Description: The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. All bits in the
status register are affected.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 B 5 4
|°|1|°|°|1|1|1|°|°|1|1l1l

3 2 1 0
0fof1]1]

144

RT E Return from Exception RT E
(Privileged Instruction)
Operation: If supervisor state
then (SP)+ —SR; (SP)+ —PC
If (SP)+ =long format

then full restore
else TRAP

Assembler
Syntax: RTE

Attributes: Unsized

Description: The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. The vector off-
set word is also pulled from the stack and the format field is examined to
determine the amount of information to be restored.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o(f1{ojof1f{1|{t1jofoft)1|1j0j0|1]1

Vector Offset Word Format:

15 12 11 10 9 0

Format 010 Vector Offset

Vector Offset Word Format Fields:
Format Field: — Specifies the amount of information to be restored.
0000 — Short. Four words are to be removed from the top of the stack.
1000 — Long. Twenty-nine words are to be removed from the top of the
stack.
Any Other
Pattern — Error. The processor takes the format error exception.

145

=)
-
=
=]
©
)
=

RT R Return and Restore Condition Codes RT R

Operation: (SP)+ —CC; (SP)+ —PC

Assembler
Syntax: RTR

Attributes: Unsized

Description: The condition codes and program counter are pulled from the stack. The
previous condition codes and program counter are lost. The supervisor por-
tion of the status register is unaffected.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2
[oft1fofof1]t1[1]ofofs]1]1]0]1]

S
- o

146

RTS RTS

Operation: (SP)+ —PC

Assembler
Syntax: RTS

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter is lost.

Condition Codes: Not affected.
Instruction Format:

15 14 13 12 11 10 9
I°|1|°|°l1|1|1|°|°l1|‘|1|°|‘|°|1|

147

S B c D Subtract Decimal with Extend S B C D

Operation: (Destination)1p — (Source)10 — X— Destination

Assembler SBCD Dy, Dx
Syntax: SBCD —(Ay), —(AX)

Attributes: Size =(Byte)

Description: Subtract the source operand from the destination operand along with the
extend bit and store the result in the destination location. The subtraction
is performed using binary coded decimal arithmetic. The operands may be
addressed in two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecre-
ment addressing mode using the address registers specified in the
instruction.

This operation is a byte operation only.

Condition Codes: X NZVEC
[*[u]*]u]*]
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a borrow (decimal) is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm-
ing before the start of an operation. This allows suc-
cessful tests for zero results upon completion of
multiple-precision operations.
Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register R/ | Register
1/0|0](0 Rx 1/0{0]0]|0 M Ry

Instruction Fields:

Register Rx field — Specifies the destination register:
If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the prececrement ad-
dressing mode.

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Ry field — Specifies the source register:
If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the predecrement address-
ing mode.

148

Scc Scc

Set According to Condition

Operation: If (Condition True)
then 1s— Destination
else Os— Destination
Assembler
Syntax: Scc <ea>
Attributes: Size =(Byte)

Description: The specified condition code is tested; if the condition is true, the byte
specified by the effective address is set to TRUE (all ones), otherwise that
byte is set to FALSE (all zeroes). “‘cc” may specify the following conditions:

CC|carry clear 0100(C LS |low or same 0011|C+Z _
CS|carry set 0101(C LT |less than 1101 [NV + N.V
EQ|equal 0111|Z MI |minus 1011|N

F |false 0001|0 _ NE|not equal 0110|Z
GE|greater or equal | 1100|N«V + N.V Pl |plus 1010(N
GT|greater than 1110|NeVeZ + NeVeZ| | T ftrue 00001

HI [high 0010|C.Z VC joverflow clear 1000 |V

LE |less or equal 1111|Z+ NV +N.V VS |overflow set 1001 |V

Condition Codes: Not affected.

Instruction Format:
15 14

of1|0]|1

13 12 1"
Condition |1 |1

10 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

Instruction Fields:
Condition field — One of sixteen conditions discussed in description.
Effective Address field — Specifies the location in which the true/false
byte is to be stored. Only data alterable addressing modes are allowed

as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —
Notes: 1. A memory destination is read before being written to.

2. An arithmetic one and zero result may be generated by following the Scc
instruction with a NEG instruction.

149

STO P Load Status Register and Stop STO P

(Privileged Instruction)

Operation: |f supervisor state
then Immediate Data— SR; STOP
else TRAP

Assembler
Syntax: STOP #xxx

Attributes: Unsized

Description: The immediate operand is moved into the entire status register; the pro-
gram counter is advanced to point to the next instruction and the processor
stops fetching and executing instructions. Execution of instructions
resumes when a trace, interrupt, or reset exception occurs. A trace excep-
tion will occur if the trace state is on when the STOP instruction is ex-
ecuted. If an interrupt request arrives whose priority is higher than the cur-
rent processor priority, an interrupt exception occurs, otherwise the inter-
rupt request has no effect. If the bit of the immediate data corresponding to
the-S-bit is off, execution of the instruction will cause a privilege violation.
External reset will always initiate reset exception processing.

Condition Codes: Set according to the immediate operand.

Instruction Format:

15 14 13 12 11 10 9 7 5 4 3

Ol1|0t0I1I1|1|0I0|1|1|1I0I
Immediate Data

ofr
s | b
olo

Instruction Fields:
Immediate field — Specifies the data to be loaded into the status register.

150

SUB SUB

Subtract Binary

Operation: (Destination) — (Source)— Destination

Assembler SUB <ea>, Dn

Syntax: SUB Dn, <ea>

Attributes: Size =(Byte, Word, Long)

Description: Subtract the source operand from the destination operand and store the

result in the destination. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

Condition Codes:

X NZVC
[l]=]*]
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.

Set the same as the carry bit.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
1|0| 0| 1| Register |Op-Mode Mode | Register

Instruction Fields:
Register field — Specifies any of the eight data registers.

Op-Mode field —
Byte Word Long Operation
000 001 010 (<Dn>)-(<ea>)—<Dn>
100 101 110 (<ea>)—(<Dn>)—<ea>

Effective Address field — Determines addressing mode:
If the location specified is a source operand, then all addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode _Register
Dn 000 | register number d(An, Xi) 110 | register number
An* 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

*For byte size operation, address register direct is not allowed.

151

— Continued —

SUB SUB

Effective Address field (Continued)

If the location specified is a destination operand, then only alterable
memory addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — —
Notes: 1. If the destination is a data register, then it cannot be specified by using

the destination <ea> mode, but must use the destination Dn mode in-

stead.
2. SUBA is used when the destination is an address register. SUBI and

SUBQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

152

SUBA SUBA

Subtract Address

Operation: (Destination) — (Source)— Destination

Assembler

Syntax: SUBA <ea>, An

Attributes: Size =(Word, Long)

Description: Subtract the source operand from the destination address register and

store the result in the address register. The size of the operation may be
specified to be word or long. Word size source operands are sian extended
to 32 bit quantities before the operation is done.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11

1100 (1

0 9 8 7 6 5 4 3 2 1 0
Effective Address
Op-Mode Mode | Register

Register

Instruction Fields:

Register field — Specifies any of the eight address registers. This is al-
ways the destination.

Op-Mode field — Specifies the size of the operation:
011 — Word operation. The source operand is sign-extended to a
long operand and the operation is performed on the address register
using all 32 bits.
111 — Long operations.

Effective Address field — Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode| Mode Register Addressing Mode | Mode Register
Dn 000 [register number d(An, Xi) 110 | register number
An 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) 111 010
—(An) 100 | register number d(PC, Xi) 111 011
d(An) 101 | register number Imm 111 100

163

Subtract Immediate

SUBI SUBI

Operation: (Destination)— Immediate Data— Destination

Assembler

Syntax: SUBI #<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Subtract the immediate data from the destination operand and store the

result in the destination location. The size of the operation may be
specified to be byte, word, or long. The size of the immediate data matches
the operation size.

X NZVC

L[~ T*1*]

Condition Codes:

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Set the same as the carry bit.

XO<NZ

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y Effective Address
0O|0|0|0O|O|1|0]|0] Size Mode | Register

Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field — Specifies the size of the operation.
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 |[register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
—(An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm - —_

Immediate field — (Data immediately following the instruction)
If size =00, then the data is the low order byte of the immediate word.
If size =01, then the data is the entire immediate word.
If size =10, then the data is the next two immediate words.

154

SUBQ

Operation:

Assembler
Syntax:

Attributes:

Description:

Subtract Quick

SUBQ #<data>, <ea>

Size = (Byte, Word, Long)

(Destination) — Immediate Data— Destination

SUBQ

Subtract the immediate data from the destination operand. The data range

is from 1-8. The size of the operation may be specified to be byte, word, or
long. Word and long operations are also allowed on the address registers
and the condition codes are not affected. Word size source operands are
sign extended to 32 bit quantities before the operation is done.

Condition Codes:

XO0O<NZ

X

N
*

T T T*]

Z VvV C
* [x| *

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Set the same as the carry bit.

The condition codes are not affected if a subtraction from an address
register is made.

Instruction Format:

15 14 13 12 1

10 9 8

7 6

5 4 3 2 1 0

0

110

1 Data 1

Size

Effective Address
Mode | Register

Instruction Fields:

Data field — Three bits of immediate data, 0, 1-7 representing a range of
8, 1 to 7 respectively.
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode| Mode Register
Dn 000 [register number d(An, Xi) 110 | register number
An* 001 | register number Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 101 | register number Imm — -

*Word and Long only.

155

s U B X Subtract with Extend S U B x

Operation: (Destination) - (Source) — X— Destination

Assembler SUBX Dy, Dx
Syntax: SUBX —(Ay), —(Ax)

Attributes: Size =(Byte, Word, Long)

Description: Subtract the source operand from the destination operand along with the
extend bit and store the result in the destination location. The operands
may be addressed in two different ways:

1. Data register to data register: The operands are contained in data
registers specified in the instruction.

2. Memory to memory. The operands are contained in memory and ad-

dressed with the predecrement addressing mode using the address
registers specified in the instruction.

The size of the operation may be specified to be byte, word, or long.

Condition Codes: XN ZVC

XO<NZ

[* [x[*] %] ¥
Set if the result is negative. Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.
Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple-
precision operations.

Instruction Format:

15 14 13 12 11 W0 % B8 7 6 5 4 3 2 1 0
Register i R/ |Register
1{0({0|1 Rx 1| Size | 0] 0 M Ry

— Continued —

156

S U B X Subtract with Extend s U B x

Instruction Fields:

Register Rx field — Specifies the destination register:
If RIM =0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address-
ing mode.

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Ry field — Specifies the source register:
If RIM =0, specifies a data register.
If RIM =1, specifies an address register for the predecrement address-
ing mode.

157

SWAP .orweeree. SWAP

Operation: Register [31:16]— Register [15:0]

Assembler
Syntax: SWAP Dn

Attributes: Size =(Word)

Description: Exchange the 16-bit halves of a data register.

Condition Codes: XN ZV C
(== *]e 10 |
N Set if the most significant bit of the 32-bit result is set. Cleared
otherwise.
Z Set if the 32-bit result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8
’0]1[0|0|1|0|0|D|0|1|0|0|0|neguster

Instruction Fields:
Register field — Specifies the data register to swap.

158

TAS TAS

Test and Set an Operand

Operation: (Destination) Tested— CC; 1—bit 7 OF Destination

Assembler

Syntax: TAS <ea>

Attributes: Size =(Byte)

Description: Test and set the byte operand addressed by the effective address field. The

current value of the operand is tested and N and Z are set accordingly. The
high order bit of the operand is set. The operation is indivisible (using a
read-modify-write memory cycle) to allow synchronization of several pro-
Cessors.

Condition Codes: XN ZVEC
__I * ‘ * l 0 l 0 l
Set if the most significant bit of the operand was set. Cleared other-
wise.
Set if the operand was zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

z

XO<MN

Instruction Format:
15 14 13 12 1

o|1|ofo|1jo|1[Of1]1

W 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

Instruction Fields:
Effective Address field — Specifies the location of the tested operand.

Only data alterable addressing modes are allowed as shown:

Addressing Mode | Mode| Register Addressing Mode | Mode Register
Dn 000 | register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 | register number Abs.L 111 001
(An) + 011 | register number d(PC) — —
— (An) 100 | register number d(PC, Xi) — —
d(An) 701 | register number Imm — —

Bus error retry is inhibited on the read portion of the TAS read-modify-write
bus cycle to ensure system integrity. The bus error exception is always
taken.

Note:

159

TRAP TRAP

Operation: PC— —(SSP); SR— — (SSP); (Vector)—PC

Assembler
Syntax: TRAP #<vector>

Attributes: Unsized

Description: The processor initiates exception processing. The vector number is
generated to reference the TRAP instruction exception vector specified by
the low order four bits of the instruction. Sixteen TRAP instruction vectors
are available.

Condition Codes: Not affected.
Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(OJ1[oJoJ1[1]1JoJo1JoJ0 Vector

Instruction Fields:
Vector field — Specifies which trap vector contains the new program
counter to be loaded.

160

TRAPV ooww TRAPV

Operation: If V then TRAP

Assembler
Syntax: TRAPV

Attributes: Unsized

Description: If the overflow condition is on, the processor initiates exception process-
ing. The vector number is generated to reference the TRAPV exception vec-
tor. If the overflow condition is off, no operation is performed and execu-
tion continues with the next instruction in sequence.

Condition Codes: Not affected.
Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oTiToJoJs 1100 1[1[1]o]1]1]0]

161

TST TST

Test an Operand

Operation: (Destination) Tested— CC
Assembler

Syntax: TST <ea>

Attributes: Size = (Byte, Word, Long)

Compare the operand with zero. No results are saved; however, the condi-
tion codes are set according to results of the test. The size of the operation
may be specified to be byte, word, or long.

Description:

XN ZVC
[—[*[*]0]0]
Set if the operand is negative. Cleared otherwise.
Set if the operand is zero. Cleared otherwise.
Always cleared.
Always cleared.
Not affected.

Condition Codes:

XO<NZ

Instruction Format:
15 14 13 12 11

0|1]0]0 |1

10 9 8 7 6 5 4 3 2 1 0
ol1lo Effective Address
Mode | Register

Size

Instruction Fields:
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 [register number d(An, Xi) 110 | register number
An — — Abs.W 111 000
(An) 010 |register number Abs.L 111 001
(An) + 011 _[register number d(PC) — —
—(An) 100 |register number d(PC, Xi) — —
d(An) 101 |register number Imm — —

162

UNLK unn UNLK

Operation: An—SP; (SP)+ — An

Assembler
Syntax: UNLK An

Attributes: Unsized

Description: The stack pointer is loaded from the specified address register. The ad-
dress register is then loaded with the long word pulled from the top of the
stack.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1 0
[oJ1JoJoJ1J1]1JoJo[1]0]1]1]Register |

Instruction Fields: :
Register field — specifies the address register through which the unlinking
is to be done.

163

APPENDIX C
INSTRUCTION FORMAT SUMMARY

C.1 INTRODUCTION

This appendix provides a summary of the first word in each instruction of the instruction
set. Table C-1 is an operation code (op-code) map which illustrates how bits 15 through 12
are used to specify the operations. The remaining paragraph groups the instructions ac-
cording to the op-code map.

Table C-1. Operation Code Map

15 th?nrutsgh 12 Bperanon 16 through 12 Operstion
0000 Bit Manipulation/ MOVEP/Immediate 1000 OR/DIV/SBCD
0001 Move Byte 1001 SUB/SUBX
0010 Move Long 1010 (Unassigned)
0011 Move Word 1011 CMP/EOR
0100 Miscellaneous 1100 AND/MUL/ABCD/EXG
0101 ADDQ/SUBQ/Scc/DBec 101 ADD/ADDX
o110 Bee/BSR 1110 Shift/Aotate
0111 MOVEQ nn (Unassigned]

Table C-2. Effective Address Encoding Summary

Addressing Mode Mode Register
Data Register Direct 000 register number
Address Register Direct 001 register number
Address Register Indirect 010 register number
Address Register Indirect with Postincrement on register number
Address Register Indirect with Predecrement 100 register number
Address Register Indirect with Displacement 101 register number
Address Register Indirect with Index 110 register number
Absolute Short 111 000
Absolute Long m o
Program Counter with Displacement 11 010
Program Counter with Index 11 [i}E]
Immediate or Status Register m 100

165

Table C-3. Conditional Tests

Mnemonic Condition Encoding Test
T true 0000 1
F false 0001 0
HI high 0010 CZ
LS low or same 0011 C+2Z
CCIHS) carry clear 0100 [
CSILO) carry set 0101 C
NE not equal 0110 z
EQ equal o z
vC overflow clear 1000 vV
Vs overflow set 1001 V'
PL plus 1010 N
Mi minus 1011 N
GE greater or equal 1100 NeV+ NV
LT less than 1101 NeV 4+ Nev
GT greater than 1110 NeVeZ + NaVeZ
LE less or equal 1 Z+NeV+NeV
OR Immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
ojofojofjfOfO]O]O Size
Mode Register
Size field: 00 =byte
01 =word
10=long
OR Immediate to CCR
1% 14 13 12 11 10] 8 7 6 5 4 3 2 1 0

[ofofoJofofoJofofoJof+[1]r]1]o]o]

OR Immediate to SR

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[oTo o o o o ofolol++]+]+]+]o]o]

166

Dynamic Bit

15 14 13 12 1 10 9 8 7

6 5 4 3 2 1 0
Data Effective Address
ofo)jo0 |0 1 Type
Register P Mode Register

Type field: 00=TST

01=CHG

10=CLR

11=SET

MOVEP
5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Data Address
Q1@ 10y 0 Register Op:Mede: | @ 10 (1 Register

Op-Mode field: 100 = transfer word from memory to register

101 = transfer long from memory to register
110 = transfer word from register to memory
111 = transfer long from register to memory

AND Immediate

15 14 13 12 11 10 9 8 7

5 4 3 2 1 0

ojfojofofofOf1]0

Size

Effective Address
Mode J Register

Size field: 00 = byte
01=word
10=long

AND Immediate to CCR

4 3 2 1

15 14 13 12 L 10 9 8 7 6 5
[oJoJoJofofof+foJoJo]1]

[Lo o]

AND Immediate to SR

15 14 13 12 1 10 9 8 7] 5 4 3 2 1 0
[ofofofofoJoftfoJofa]e]s]1]t]ofo]

167

SUB Immediate

15 14 13 12 1 10 9 8 rd 6 5 4 K] 2 1 0
Effective Address
Mode | Register

O(0|O|O0O|[O|1] 0|0/ Size

Size field: 00 =Dbyte
01 =word
10=1long

ADD Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode | Register

00|00]|]O0O|1]1]|]0]| Size

Size field: 00=byte
01 =word
10=long

Static Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
Mode Register

0(0]|J0)JO|1|O0O|O0O]O0]| Type

Type field: 00=TST
01=CHG
10=CLR
11=SET

EOR Immediate

15 14 13 12 1 10 9 8 7 6] 4 3 2 1 0
Effective Address
Mode Register

0OlO0O[O0O|O0|1]0|1]0]| Size

Size field: 00 = byte
01 =word
10=long

EOR Immediate to CCR
15 14 13 12 11 10 9 8 7] 5 4 3 2 1 0
ofofoJofrfofsfofofof1[+[1]1]o0]

168

EOR Immediate to SR

i5 14 13 12 11 10 9 8 7] 5 4 3 2 1 0
[ofojofoft]oft]ojofaftfrf1]tfofo]

CMP Immediate

15 14 13 12 1

10 9 8 7 6

5 4 3 2 1 0

o(ojOojO|1

110]0 Size

Effective Address
Mode] Register

Size field: 00 = byte
01 =word
10 = word

MOVES MC68010

15 14 13 12 N 10 9 8 7 6

5 4 3 2 1 0

ojofo |1 |1]1

1(0 Size

Effective Address
Mode Register

Size field: 00=byte
01 =word
10=long

MOVE Byte

15 14 13 12 1N 10

9 8 7]

5

4 3 2 1 0

0j]0|O0{f1

Register | Mode

Destination

Source
Mode Register

Note register and mode locations

169

MOVEA Long
14

14

13

12

1 10 9 8 7

5

4

3 2 1 0

Destination Source
o010 \ 0|01
Register Mode Register
MOVE Long
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Destination Source
ojo|1]|0 . .
Register Mode Mode Register
Note register and mode locations
MOVEA Word
15 14 13 12 1M 10 9 8 7 6 5 4 3 2 1 0
Destination Source
0|01 1 A 001
Register Mode Register
MOVE Word
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Destination Source
ofo| 1] 1 _
Register Mode Mode Register

Note register and mode locations

170

NEGX

15 14 13 12 1 10 9 7 6 5 4 3 2 1]
Effective Address
of(1|]0j]o0|(0O|O]O Size
Mode Register
Size field: 00 =byte
01=word
10=long
MOVE from SR
5 14 13 12 11 10 9 7 6 5 4 3 2 1 0
Effective Address
01 ofo0ojOf|O}|O 1 1
Mode Register
CHK
15 14 13 12 1 10] 7 6 5 4 3 2 1 0
Effective Address
ol1]0]o0 Data 1]o
Register Mode Register
LEA
15 14 13 12 1 10 9 7 6 5 4 3 2 1 0
Address Effective Address
0| 1 0|0 ; 1 1
Register Mode Register
CLR
15 14 13 12 1 10 9 7] 5 4 3 2 1 0
Effective Address
oj1|(o0|O0|O]|O0O]1 Size

Mode Register

Size field: 00 =byte
01 =word
10=long

171

MOVE from CCR MC68010
15 14 13 12 11

5

4 3 2 1 0

Effective Address

o|1|j0|jO0fOfO]1]O]1[1
Mode Register
NEG
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Addre
ol1]o|oflo|1|0]0] size oelve racings
Mode Register
Size field: 00 = byte
01 =word
10=long
MOVE to CCR
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
ffective Add
ol1lolololi1lolol1]1 Effective Address
Mode Register
NOT
6 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Effective Address
o|l1l0|l0|0]1]1]0]| Size .
Mode Register
Size field: 00 =byte
01=word
10=long
MOVE to SR
5 14 13 12 11 10 9 8 7 6